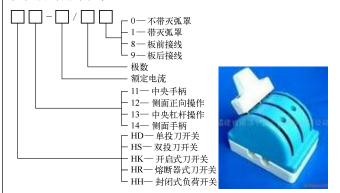

电气控制与 PLC 应用技术电子教案


任务 1		三相异步电动	动机启动控制电路的接线与调试	授课人				
课时			4	时间				
班级				地点				
		知识目标	掌握按钮、熔断器、接触器、刀开	关的结构和	工作原理	1		
		技能目标	会选择使用按钮、刀开关、熔断器、接触器等低压电器					
教学目标	示		1.培养学生严格按照生产实践的标》	住进行学习 的	的学习习	惯		
		素质目标 2.培养学生团结、协作及良性竞争的精神						
W.W	1.		3.培养学生自己获取信息的能力及[
教学重点			熔断器、接触器的工作原理及选用方					
教学难见			异步电动机连续控制电路的接线与调	讨试				
教学方法		讲授法、案例法	、演示法					
教学参 考书	•	"十三五"职业	教育国家规划教材《电气控制与 PLC	C应用技术》) 吕爱华	编著		
		教学内	容——过程	思政元素	教师 活动	学生 活动		
导入新	小	时候总听父母交伯	代出去玩耍时切记不可到高压线附	讲授"罗				
课			电呢?相对的有没有低压电呢?我们	东元"先	44.444	田土		
		活中的用电是高月		进事迹	讲述 	思考		
			· 高低压的呢?今天我们要学习的就					
		低压电。 、概述		心系国				
		··· –	输送、分配和使用起控制、调节、	次 四	讲述	听讲		
 讲			三用,是所有电工器械的简称。我国	未来,这	板书			
授			泛流 50Hz、额定电压在 1200V 以下	是罗东元				
新	和	直流额定电压 150	00V 及以下电路中的电器称为低压	这一辈老				
课	电	器。		同志们的				
	l	、低压电器的分类		大爱大	讲述	观察		
			中所处的地位和作用可分为控制电	德,他们	 板书	记忆		
		和配电电器两大类		继往开	似节	157		
			动切换电器和非自动切换电器两大	来,守正				
	类		. 虫点和无触点电器两大类。	创新,开 启了新中				
			^国	四				
	'	、刀开 关 、刀开关	以 电	术领城的				
			F用是:隔离电源,以确保电路和设	世界大				
			行负载,如不频繁地接通和分断容量	门,为我	出示	 听讲		
	不	大的低压电路或直	直接启动小容量电动机。	们带来了				
	1.5	开启式负荷开关结	i构	希望和光	实物	观察		
	开	启式负荷开关由势	操作手柄、熔丝、触刀、触点座和底	明, 也成		记忆		
			图如图 1 所示,其文字符号为 QS。	为了时代				
	此	种刀开关装有熔丝	丝,可起短路保护作用。	楷模。				

1—上胶盖, 2—下胶盖, 3—插座, 4—触刀, 5—瓷柄, 6—胶盖紧固螺母, 7—出线座, 8—熔丝, 9—触刀座, 10—瓷底板, 11—进线座

2. 刀开关的主要技术参数及型号

刀开关的主要技术参数有:额定电流(长期通过的最大 允许电流)、额定电压(长期工作所承受的最大电压) 以及分断能力等。

四、熔断器

熔断器是一种当电流超过规定值一定时间后,以它本身产生的热 量使熔体熔化而分断电路的保护电路。熔断器串接于被保护电路 中, 当电路正常工作时, 熔断器就相当于一根导线; 当电路发生 短路或严重过电流时快速自动熔断,从而切断电路电源,起到短 路保护作用。

1. 熔断器的结构

熔断器

型式代号: C-插入式 L-螺旋式 M-无填料封闭管式 T-有填料封闭管式

设计代号

熔断器由熔断管(或座)、熔体以及外加填料等部分组成。

让我们站 在巨人的 肩膀上, 拿起国家 发展和技 术革新的 接力棒, 为我们的 国家开创 更加美好 的未来!

提出 小组 问题 讨论

引导 学生

回答

讲述 板书

听讲 出示

观察

提出

问题

引导

学生 回答

实物

记忆

五、按钮

按钮是一种接通或分断小电流电路的主令电器。触头允许通过的电流较小. 一般不超过 5A, 主要用在低压控制电路中. 手动发出控制信号。

1.按钮的工作原理

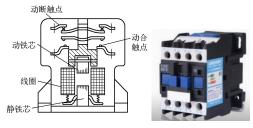
按下时常闭触头先断开,然后常开触头闭合。去掉外力后在恢复 弹簧的作用下,常开触头断开,常闭触头复位。

2. 按钮的结构

按钮由按钮帽,复位弹簧,桥式动、静触头和外壳等组成。一般为复合式.即同时具有常开、常闭触头。

3.按钮型号和符号

六、接触器


接触器在机床电路及自动控制电路中作为自动切换电路,用来远距离频繁地接通和断开交直流主回路和大容量控制电路,同时具有欠电压、零电压释放保护的功能。

1. 交流接触器的工作原理

当接触器线圈通电后,线圈电流产生磁场,静铁芯产生 电磁吸力将衔铁吸合。衔铁带动触点系统动作,使常闭 触点断开,常开触点闭合,两者是联动的。当线圈断电 时,电磁吸力消失,衔铁在反作用弹簧力的作用下释放, 使触点系统随之复位。

2.交流接触器的结构

交流接触器常用于远距离接通和分断电压至 1140V、电流至 630A 的交流电路。其结构如图 2 所示,它由电磁机构、触点系统、灭弧装置及其他部件组成。

3.交流接触器型号和符号

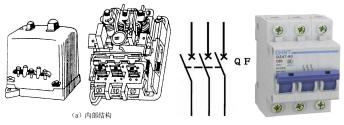
出示 观察

实物 讨论

出示 观察

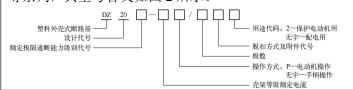
讨论

提出问题


实物

引导 学生

回答

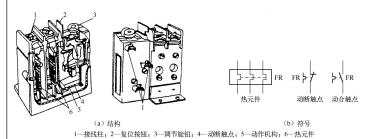

	C 主触点数 额定电流 U1 L2 L3 7 2 - 直流 P - 中频 接触器		
	四、三相异步电动机的点动和连续运行的控制原理与接线		
	1.工作原理 首先合上电源开关 QS:		
	(1) 连续控制	演示	学生
	启动:按下 SB1→KM 线圈得电→KM 主触头闭合,同时 KM 常		
	开辅助触头自锁→电动机 M 启动。	操作	动手
	停止:按下SB2→KM线圈失电→KM主触头断开,KM常开辅助触头断开→电动机 M停车。		操作
	(2) 点动控制		
	启动:按下 SB3→SB3 常闭触头先断开;常开触头后闭合→KM 线圈得电→KM 主触头闭合,同时 KM 常开辅助触头自锁→电动		
	机M启动。		
	停止:松开 SB3→SB3 常开触头先断开;常闭触头后闭合→KM		
	线圈失电→KM 主触头断开,KM 常开辅助触头断开→电动机 M		
	停车。		
	2.三相异步电动机的点动和连续运行的控制电路接线		
	PE QS U11 FU2 L1 V11		
课堂 小结	1.低压电器的结构和工作原理以及型号和图形符号,图形符号和作用是同学必须掌握的。		
1,21	2.三相异步电动机的点动和连续运行的控制原理和接线。		
布置作业	P43 页 1.2.3 题; P44 页 4.5.6 题。		
教学 反思			

课时 班级			2				
班级			时间				
	班级						
知识目标 掌握行程开关、热继电器、空气开				关的结构和	工作原	理	
教学目	标	技能目标	技能目标 会选择使用行程开关、空气开关、热继电器,能正确安装 相异步电动机正反转控制电路				
	420	素质目标	1.培养学生严格按照生产实践的标准进行学习的学习习惯 2.培养学生团结、协作及良性竞争的精神 3.培养学生自己获取信息的能力及自学能力				
教学重	点	行程开关、热继电器	器的工作原理及选用方法				
教学难	点	能正确安装三相异构	步电动机正反转控制电路的接线与调	试			
教学方	法	讲授法、案例法、流	寅示法				
教学参 考书		"十三五"职业教育	育国家规划教材《电气控制与 PLC 应	应用技术》	吕爱华纲	扁著	
	•	如 兴山旁	├ ├──过程	思政	教师	学生	
		教子 內名	\$——过程 	元素	活动	活动	
			、按钮、接触器、熔断器等低压电	讲授"机			
			天我们一起来学习低压电器的其它	车工匠	讲述	思考	
	元件-	一低压断路器、行程开	F 关、热继电器。 	一李万	併处	心气	
\11 725		^ Iru' Nor' rate 1111		坤"事迹			
		压断路器 吃吸 器		李万坤, 是中车	讲述	听讲	
			五天,是一样以有于幼月天作用, 五路等故障进行自动保护的开关电	洛阳机	板书		
		7.人心丛、		车有限			
		医断路器的工作原理		公司内			
1	低压断	路器的主触点是靠手动	, 力操作或电动合闸的。主触点闭合后,自	无人不			
	由脱扣	机构将主 触点锁在合门	闸位置上。过电流脱扣器的线圈和热脱扣	知的电	讲述	观察	
1	器的热	元件与主电路串联,欠	电压脱扣 器的线圈和电源并联。当电路	工高级	., _	, =, ,	
	发生短	[路或严重过载时,过电	1流脱扣器的衔铁吸合,使自由脱扣机构	技师,也	板书	记忆	
			6电路过载时,热脱扣器的热元件发热使	是车间			
			的打机构动作。当电路欠电压时,欠电压	里德高			
			H脱扣机构动作。分励脱扣器则作为远距	望重的			
			5.线圈是断电的,在需要距离控制时,按 f铁带动自由脱扣机构动作,使主触点断。	"老师傅"。从			
	下起み 开。	DS班, 区线圈地电, 作	15. 中约日田成147619471上,发土概点图	世 几 十			
		医断路器的外形结构。	及符号	年,这个			
			触点、保护装置(各种脱扣器)、	半路出			
			路器的符号如图1所示。	家的"门	出示	听讲	

3.低压断路器的主要技术参数及型号

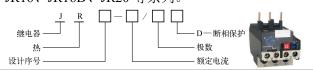
低压断路器的主要技术参数有:额定工作电压、壳架额定电流等级、极数、脱扣器类型及额定电流、短路分断能力等。低压断路器的主要型号有 DW10、DW15、DZ5、DZ10、DZ20 等系列,其型号含义如图 2 所示。

二、热继电器


利用电流的热效应原理,为电动机提供过载保护的保护电器。主要用于三相异步电动机的过载、缺相及三相电流不平衡的保护。

1.热继电器的工作原理

热继电器正常工作时,热元件感知电流,将热量传到主双金属片 14 上,主双金属片受热发生弯曲变形不足以使继电器动作;过载时,热元件上电流过大,主双金属片弯曲变形加剧,向右推动导板 16,使常闭触点动作切断控制电路(保护主电路);热继电器动作后,经过一段时间的冷却自动复位,也可按复位按钮 13 手动复位(根据使用要求通过复位调节螺钉 9 来自由选择复位方式)。旋转凸轮 6 置于不同位置可以调节热继电器的整定电流。


2.热继电器的结构和符号

双金属片式热继电器主要由双金属片热元件、动作机构、触点系统、整定装置及复位按钮等组成。

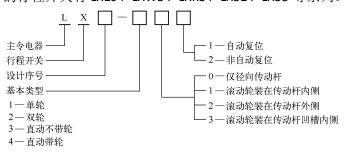
3. 热继电器主要技术参数及型号含义

热继电器主要技术参数有: 热继电器额定电流、相数、热元件额定电流、整定电流及调节范围等。常用的热继电器有JR16、JR16D、JR20 等系列。

外汉", 实物 观察 硬是靠 记忆 着自学 成了技 术能手, 提出 小组 当上了 "大国 问题 讨论 工匠", 功夫不 负有心 引导 人,通过 学生 不断地 学习和 回答 实践,李 万坤很 快成为 车间里 数一数 二的技 术骨干, 他相继 主持完 讲述 听讲 成了《牵 板书 观察 引电机 抱轴瓦 记忆 磨合试 验台设 计新制》 出示 《柴油 实物 机试验 站五台 位电气 提出 仪表系 统改造》 问题 《励磁 柜设计 新制》 引导 《柴油 学生 机试验 台位于 回答 阻装置 的失风 保护》

《GK1E

三、行程开关


行程开关又称位置开关或限位开关, 其作用是将机械位移转 换成电信号,使电动机运行状态发生改变,即按一定行程自 动停车、反转、变速或循环,以此来控制机械运动或实现安 全保护。行程开关按结构分为机械结构的接触式有触点行程 开关和电气结构的非接触式接近开关。

1.有触点行程开关

机械结构的接触式行程开关是依靠移动机械上的撞块碰撞 其可动部件, 使常开触点闭合、常闭触点断开来实现对电路 的控制。当工作机械上的撞块离开可动部件时,行程开关复 位,触点恢复其原始状态。机械式行程开关分为直动式、滚 动式和微动式三种,其外形结构和符号如图 3 所示。

- ① 行程开关的结构和符号。行程开关主要由操作机构、触 点系统和外壳等组成。
- ② 行程开关的主要技术参数及型号。行程开关的主要技术 参数有额定电压、额定电流、触点换接时间、动作力、动作 角度或工作行程、触点数量、结构形式和操作频率等。常用 的行程开关有 LX19、LXW5、LXK3、LX32、LX33 等系列。

2.接近开关

在生产过程中完成对运动部件位置检测的常用器件就是电 子接近开关,它可在物体与接近开关处于一定距离(不需要 接触) 时输出电信号,自动控制系统则根据电子接近开关的 输出来判断被检测物体是否到达指定的位置。

电子接近开关根据被检测物体种类的不同和检测原理的不 同,可以分为许多种类。常用的有电感式接近开关、电容式 接近开关、磁性接近开关、光电接近开关等。

接近开关外形及文字符号如图 4 所示。

四、三相电动机的正反转控制原理与接线

柴油机 的试验 台位改 造项目》 《光电 一体化 智物料 分拣器 试验台》 《铁路 工程车 齿轮箱 磨合试 验台》等 多个新 装备设 计制造, 率 领 工 作室完

成创意

改善 42

项,获奖

五小成 果

个,申报

专利 2

学生能

项。

15

提出 问题

> 引导 学生

独立讲 行元器 件的选 型及掌 握连接 工艺技 能;建立 学生的 专业自

信,实践

创新的 工匠精 神。

观察

实物 讨论

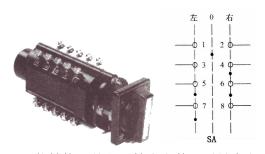
出示

回答

	1.工作原理		
	先合上电源开关 QS。		
	(1) 正转控制		
	启动:按下 SB3→SB3 常闭触头先断开;常开触头后闭合,实现机械	讲述	听讲
	互锁使 KM2 不能得电→KM1 线圈得电→KM1 主触头闭合,同时 KM1		
	常闭触头断开,实现电气互锁; KM1 常开辅助触头自锁,→电动机 M	板书	观察
	正转启动。		记忆
	(2) 反转控制		,0,0
	启动:按下 SB2→SB2 常闭触头先断开,KM1 线圈断电;常开触头后		
	闭合→KM2 线圈得电→KM2 主触头闭合,同时 KM2 常开辅助触头自		
	锁→电动机 M 反转启动。		
	(3) 停止:		
	按下 SB1→KM1 (或 KM2) 线圈失电→KM1 (或 KM2) 主触头断开,		
	KM1(或 KM2)常开辅助触头断开→电动机 M 停车。		
	2.三相电动机的正反转控制电路接线		
	QS U11 FU2	演示	学 生
	V11 FR - 4	操作	动 手
	FUI SBIE-7	1米11-	90 子
			操作
	SB2 E - 4 SB3 - E - 7		
	KM_1 $E \rightarrow KM_2$ $E \rightarrow KM_3$		
	5 KM2 7 KM ₁ 7		
	FR (C C)		
	PE KM1 KM2		
	Ť 32		
	1.低压电器的结构和工作原理以及型号和图形符号,图形符		
课堂	号和作用是同学必须掌握的。		
小结	2.三相异步电动机的正反转控制原理和接线。		
	4.一年月夕1日初年八年日月本年15次。		
布置	DA4 五 7 0 0 10 11 12 晒		
作业	P44 页 7.8.9.10.11.12 题。		
教学			
教子 反思			

任务	3	三相异步电动机降压启动控制电路的接线与调试 授课人				
课时	ţ		2	时间		
班级	ž			地点		
		知识目标	掌握转换开关、时间继电器、万能转换	开关的结构	和工作	原理
		技能目标	会选择使用转换开关、时间继电器、万	能转换开关	,能正	确安装
 教学目	1标	及此口小	三相异步电动机降压启动控制电路			
	1.培养学生严格按照生产实践的标准进				习习惯	
		素质目标	2.培养学生团结、协作及良性竞争的精神			
±1. W. =	<u> </u>	++++ T V. p.1.)	3.培养学生自己获取信息的能力及自学的			
教学重			继电器、万能转换开关的工作原理及选用	** * **		
教学难			异步电动机降压启动控制电路的接线与证	引试		
教学方		讲授法、案例法	、			
教学者		"十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技术》吕	爱华编	著
		<i>为</i> 5 产		思政	教师	学生
				元素	活动	活动
导入			压断路器、行程开关、热断电器等低压	讲授"游		
新课			理,今天我们一起来学习低压电器的其	弋"事迹	讲述	思考
\1L.1 . 55			万能转换开关、时间继电器。	Л. Уп. —	开处	10.2
讲授		转换开关 > T. 关 又 秒 桂 换 T	. 子 · 月 · 孙夕勋上 · 夕长男子 · 可按判	他没有		
新课			·关,是一种多触点、多位置式,可控制 【合开关具有体积小、性能可靠、操作方	受过高等教育,		
			[6] 大兵有体份小、庄配马菲、採下为 [,多用于机床电气控制线路中电源的引	守教 目, 凭 着 勤		
			源作用,还可作为直接控制小容量异步	奋的自		
			停止的控制开关。	学,成为	讲述	听讲
	1.组	合开关的外形、	结构和符号	一名技	板书	观察
	组台	6开关由动触点(动触片)、静触点(静触片)、转轴、手	术 精 湛	100 19	
	柄、	定位机构及外壳	等部分组成。其动、静触点分别叠装于	的电工		记忆
	数层	层绝缘壳内。当转	动手柄时,每层的动触点随方形转轴一	高级技		
			中路的通、断控制。组合开关同样也有	师;他没		
	単板	及、双极和三极之	分,如图1所示。	有受过		
				专业指		
				导,凭着		
				刻苦的		
	8	5		新妍, 丁 余 项 专	出示	听讲
		6		利 从 他	实物	观察
		7		手中诞		 记忆
	97	1	A = A = A = A = A = A = A = A = A = A =	生。他发		ובוע
		· · · · · · · · · · · · · · · · · · ·		明的"钢		
	5绝缘 8绝缘	k墊板,6─动触点,7─静触点, k方轴,9─接线柱	单极 双极 三极	丝绳全	提出	小组
	2.组	合开关的主要技	术参数及型号	自动除		
	组合	· 开关的常用产品	有 HZ5、HZ10、HZ12、HZ15 等系列。	尘装置"	问题	讨论

主要参数技术有额定电压、额定电流和极数等。



二、万能转换开关

万能转换开关是一种多挡位、多段式、控制多回路的主令电器,当操作手柄转动时,带动开关内部的凸轮转动,从而使触点按规定顺序闭合或断开。万能转换开关一般用于交流500V、直流 440V、约定发热电流 20A 以下的电路,用于电气控制线路的转换和配电设备的远距离控制、电气测量仪表转换,也可用于小容量异步电动机、伺服电动机、微电动机的直接控制。

1.万能转换开关的外形和符号

它依靠操作手柄带动转轴和凸轮转动,使触点动作或复位, 从而按预定的顺序接通与分断电路,同时由定位机构确保其 动作的准确可靠。

2. 万能转换开关主要技术参数及型号含义

万能转换开关的主要技术参数有额定电压、额定电流、额定绝缘电压、约定发热电流、电寿命(次)、机械寿命(次)、操作频率(次/h)等。常用万能转换开关有 LW5、LW6、LWI2-16等系列,它们多用于电力拖动系统中对线路或电动机实行控制。

三、时间继电器

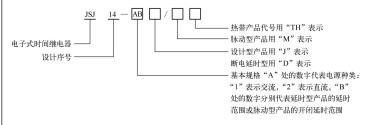
时间继电器是电路中控制动作时间的继电器,它是一种利用电磁原理或机械动作原理来实现触点延时接通或断开的控制电器,按其动作原理可分为电磁式、电动式、空气阻尼式、电子式、数字式等类型。目前应用最广泛的是电子式和数字式时间继电器。

1.时间继电器的外形结构和符号

填 们 J		
国内主	_, .	
提升钢	引导	
丝绳净	学生	
化技术	•	
的空白。	回答	
他就是		
"全国		
技术能		
手"、河	讲述	 听讲
南能源	· · -	
化工集	板书	观察
团 永 煤		记忆
公司车		,_
集煤矿		
机电一	出示	 听讲
队主副		
井 电 工	实物	观察
班班长		记忆
游弋。刻		
苦的学		
习创新		
给游弋	±□ .1.	1 40
带来了	提出	小组
111 >14 1	Ж.Ш	1 211
众多荣	问题	讨论
众多荣誉:全国		
众多荣		
众多荣誉:全国		
众 多 荣 誉:全国 首届"百	问题引导	
众誉:届"在 多全面"、 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	问题	
众誉首名青工国家全"届优年"、煤	问题引导	
众誉首名青工国系党是属优年"煤统"	问题 引导 学生	
众誉首名青工国系能多全"届优年"、煤统荣国百秀矿全炭技大	问题 引导 学生	
众誉首名青工国系党是属优年"煤统"	问题 引导 学生	
众誉首名青工国系能师国多全"居优年"、煤统"、技荣国百秀矿全炭技大全术	问题 引导 学生	
众誉首名青工国系能师多全"届优年"、煤统"、荣国百秀矿全炭技大全	问题 引导 学生	
众誉首名青工国系能师国能等多全"优年"、煤统 、技手他荣国百秀矿全炭技大全术"领	问题 引导 学生	
众誉首名青工国系能师国能等衔多:届优年、煤统 、 , 、	问 引 学 回答	讨论
众誉首名青工国系能师国能等衔作多:届优年、煤统 、 , , , , , , , , , , , , , , , , , ,	问题 引导 学生	
众誉首名青工国系能师国能等衔作命多:届优年、煤统 、 , , , , , , , , , , , , , , , , , ,	问 引 学 回答	讨论
众誉首名青工国系能师国能等衔作命全多:届优年、煤统 、技手他的室名国荣国百秀矿全炭技大全术,领工被为首	问 引 学 回 讲述	讨论 听 观 讲 察
众誉首名青工国系能师国能等衔作命多:届优年、煤统 、 , , , , , , , , , , , , , , , , , ,	问 引 学 回 讲述	讨论

大师工

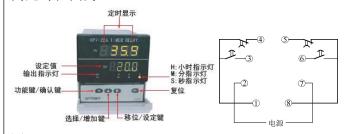
填补了



(g)延时闭合常闭触点 (h)瞬动常开触点 (i)瞬动常闭触点 2.时间继电器的工作原理

通电延时型时间继电器的动作原理是:线圈通电时,触点延 时动作;线圈断电时,触点瞬时复位。断电延时型时间继电 器的动作原理是:线圈通电时,触点瞬时动作:线圈断电时, 触点延时复位。

(1) 电子式时间继电器


电子式时间继电器由晶体管、集成电路和电子元器件等构 成,目前已有采用单片机控制的时间继电器。电子式时间继 电器的型号含义如图 2 所示。

电子式时间继电器的主要技术参数有:工作电压(V)、延时 触点数量 (通电延时和断电延时)、瞬时动作触点数量(动 合和动断)、延时范围(s)、功率损耗(W)、机械寿命(万 次)等。常用电子式时间继电器有 JSJ、JSB、JS14、JS15、 JS14A、JS20 等系列。

(2) 数字式时间继电器

数字式时间继电器可通过调整键"一"和"+"设置定时时间, 时间单位可在 s (秒)、m (分)、h (小时)之间切换,时 间延时范围为 0.1s~99h。

四、三相电动机的 Y-△降压启动控制原理与接线

1.工作原理

一。他还 取得十 三项国 家专利、 发表机 电专业 论文数 篇。 面对成 绩,他没 有骄傲 自满,面 对困难, 他依然 奋勇向 前,他又 把创新 的目光 锁定在 主提升 系统技 术改造 等方面, 再次向 更高领 域发起 了冲锋。

作室"之

听讲 观察

出示

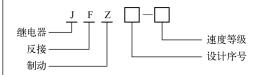
实物

记忆

小组

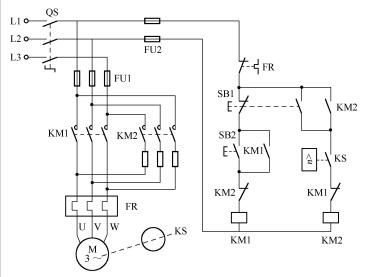
讨论

引导 学生 回答


提出

问题

	The state of the s		
	(1)降压启动: 先合上电源开关 QS。		
	按下 SB1→KMY 线圈得电,同时 KT 线圈得电→KMY 常开触头闭合		
	→KM 线圈得电→KM 自锁触头闭合自锁,同时主触头闭合→KMY 主		
	触头闭合→电动机 M 接成 Y 形降压启动。	讲述	听讲
	当电动机 M 转速上升到一定速度时, KT 延时结束→KT 常闭触头分断	i.~ 1.>	चल क्ले
	→KMY 线圈失电→KMY 常开主触头分断,同时 KMY 主触头分断,	板书	观察
	解除 Y 形连接 \rightarrow KMY 联锁触头闭合 \rightarrow KM Δ 线圈得电 \rightarrow KM Δ 联锁触		记忆
	头分断 $ ightarrow$ KT线圈失电 $ ightarrow$ KM Δ 主触头闭合 $ ightarrow$ 电动机 $ ightarrow$ 接成 Δ 形全压		
	运行。		
	(2) 停止: 按下 SB2 即可实现。	演示	学生
	2.三相异步电动机的 Y-∆降压启动控制电路接线		
	QS UII	操作	动手
	120 VII U2 FR /1		操作
	U12 V12 W12 SB2 E-		
	U13 V13 W13 SB1E - KM		
	FR		
	KMA KMY		
	PE M KM公 A C A C A E KMY		
	KMY KM		
	1.71-99		
课堂	1. 低压电器的结构和工作原理以及型号和图形符号,图形符		
小结	号和作用是同学必须掌握的。		
	2. 三相异步电动机的 Y-Δ降压启动控制原理和接线。		
布置			
作业	P44 页 13.14.16.17.18.19.20.21.22 题。		
11-11			
教学			
反思			


任务	- 4	三相异步电动机制动和调速控制电路的接线与调试 授课人					
课时	寸		2	时间			
班组	及			地点			
		知识目标	掌握速度继电器的结构和工作原理;调	速控制方法	<u>.</u> .		
		技能目标	会选择速度继电器,能正确安装三相异数 线路	步电动机制	动和调:	速控制	
教学目	目标			^{ス町} 1.培养学生严格按照生产实践的标准进行学习的学习习惯			
		 素质目标	2.培养学生团结、协作及良性竞争的精				
			3.培养学生自己获取信息的能力及自学的	能力			
教学』	10点	速度继电器的工	作原理及选用方法				
教学》	住点	能正确安装三相	异步电动机制动和调速控制电路的接线与	i调试			
教学プ	方法	讲授法、案例法	、演示法				
教学考书		"十三五"职业	教育国家规划教材《电气控制与 PLC 应序	月技术》吕	爱华编	著	
		L./		思政	教师	学生	
		教学	2内容——过程	元素	活动	活动	
导入	上节	节课我们学习了转:	换开关、万能转换开关、时间继电器等	讲授"邓			
新课	低月	医电器的结构和工	作原理,今天我们一起来学习低压电器	建军"事		_ ,	
	的非	其它元件一速度继申	电器。	迹	讲述	思考	
讲授	一、	速度继电器		邓建军			
新课			动机转轴的转速来切换电路的自动电	从 1988			
			异步电动机的反接制动控制中,故称为	年中专			
		接制动继电器。		毕业入			
		速度继电器外形、		厂,在黑	讲述	 听讲	
			肉和符号如图 1 所示。速度继电器主要	牡丹股	OI XL	71 61	
		, , , , , , , , , , , , , , , , , , , ,	三部分组成,转子是一个圆柱形永久磁	份有限	板书	观察	
			空心圆环,由硅钢片叠成,并装有笼形 的轴与电动机的轴相连接,转子固定在	公司的30 年		记忆	
		cu。		间,邓建		, ,	
	1ШД	_		军从一			
			7 10 2 3	名普通			
	П		5	的电气			
	N.	9 11	8 KS - () In - 1 KS In - 7 K	维修工			
		7	分合 维电器转子 I 方分触点 动蜥触点	成长为			
			(c) 符号 4-绕组, 5-摆锤; 6、7—静触点; 8、9—簧片; 10、11—动触点	技术总	出示	 听讲	
	2.	速度继电器的工作	原理	监。邓建			
	当电	且动机转动时,速	度继电器的转子随之转动,绕组切割磁	军带领	实物	观察	
		生感应电动势和	团队开		记忆		
			转子的转动方向偏摆,通过定子柄拨动	发出"在			
			合,常闭触点断开。当电动机转速下降	线染料			
			卜 ,定子柄在弹簧力的作用下恢复原位,	组分自	提出	小组	
		瓦也复位。 法	. ++ - 	动控制 系统"	问题	讨论	
	3.	速度继电器的主要	· 拉 小 奓剱和型亏	系 统 "	11 1/2	1 N.T	

常用的速度继电器有 JY1 和 JFZ0 型。现以 JY1 型速度继电器为例,它的主要技术参数包含:动作转速(一般不低于120r/min),复位转速(约在 100r/min 以下);工作时,允许的转速高达 1000~3600 r/min。

二、反接制动控制电路原理与接线

合上开关 QS,按下启动按钮 SB2→KM1 动作,电动机转速很快上升到 120r/min,速度继电器动合触点闭合。电动机转动时,速度继电器 KS 的常开触点一直保持闭合状态,为反接制动时接触器 KM2 线圈通电做好准备→当需要停车时,按下复合按钮 SB1→SB1 动断触点先断开,使 KM1 线圈断电释放。主回路中,KM1 主触点断开,使电动机脱离正相序电源→SB1 动合触点后闭合,接触器 KM2 线圈通电吸合并自锁,主触点动作,电动机定子串入对称电阻进行反接制动,使电动机转速迅速下降→当电动机转速下降至 100r/min 时,速度继电器 KS 的常开触点断开,KM2 线圈断电释放,电动机断开电源后自由停车。

三、双速电动机自动加速控制电路原理与接线

1.工作原理

合上三相电源开关 QS,接通控制电路电源。接下 SB2→接触器 KM1 线圈通电并自锁→其辅助常开触点接通 KT 线圈,KM1 主触点同时闭合→电动机定子绕组为三角形连接→电动机低速运行。经过延时→KT 延时断开常闭触点断开→KM1 线圈失电→KT 延时闭合→常开触点闭合,KM2、KM3 线圈同时得电并自锁→电动机由Δ低速运转自动切换为双星形高速运转。当需要停车时→按下停止按钮 SB1→接触器 KM2、KM3 线圈断电释放,电动机停转。

" 在 线 染液控 引导 制系统" " 在 线 学生 流量控 回答 制系统" "自动 浆液 控 制系统" 和"染料 组分分 讲述 听讲 析计算 控制系 板书 观察 统"五项 记忆 成套技 术,每一 项都是 业内首 创,黑牡 丹染色 质量从 此达到 世界领 演示 学生 先水平。 工作 30 操作 动手 年来,邓 操作 建军带 领团队 共参与 技改项 目 400 余项,成 功填补 了 讲 500 个 技改空 白。经过 讲述 听讲 协同努 板书 观察 力,团队 获 得 9 记忆 项国家 发明专 利,10

项实用

	2.双速电动机自动加速控制电路接线 L1 • QS L2 • FU2 SB1 E	新型专利,多项国家级、省级高	演示操作	学生动手
	FU1 FU1 KM3 KM2 KM1 KM3 KM2 KM1 KM3 KM2 KM1 KM3 KM3 KM2 KM1 KM3 KM3 KM3 KM1 KM1 KM3 KM3	新成省科果。		操作
课堂小结	1.低压电器的结构和工作原理以及型号和图形符号,图形符号和作用是同学必须掌握的。 2.三相异步电动机制动和调速控制电路的接线与调试原理和接线。			
布置作业	P45 页 29.30.31.32.33.34.35.36.37 题。			
教学 反思				

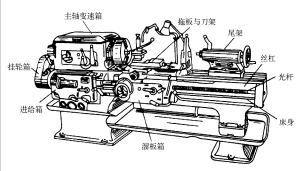
任务:	5	C650 卧	授课人			
课时			4	时间		
班级			地点			
教学目标		知识目标	1. 了解 C650 卧式车床设备的结构、主要运 2. 学会阅读分析常用机床电气控制原理图的 3. 能够熟读电气设备总装接线图和电气元品 4. 掌握常用机床电气控制的安装和接线方流	的方法和步 器件布置图	骤。 与接线	图。
		技能目标	1. 能够正确使用电工仪表检测机床设备电 ⁴ 2. 能根据常用机床的电气控制原理图进行试。 3. 能根据常用机床电气控制系统的故障现象并加以修复、排除。	正确的安装	岌、接 线	
		素质目标	1.培养学生严格按照生产实践的标准进行等 2.培养学生团结、协作及良性竞争的精神 3.培养学生自己获取信息的能力及自学能力		习惯	
教学重	点	C650 卧式车床	控制电路与其结构组件之间的联系; 机床电	上 气控制原环	里图的分	分析
教学难	点	常用机床电气	空制系统的故障现象准确分析,查找故障原因	并加以修复	、排除	0
教学方	法	讲授法、案例	法、演示法			
教学参 考书		"十三五"职	业教育国家规划教材《电气控制与 PLC 应用	技术》吕勃	爱华编章	荃
		孝	数学内容——过程	思政 元素	教师 活动	学生 活动
导 入新课		工厂中经常看见 和工作原理吧。	L过车床,那我们今天来了解一下车床的结	讲 人 家 书 迹	讲述	思考
讲授新课	1. 为修表图图 2. 电名上二用元三	了等示样形 电气称使、图器、表技,或符气图、用电形件电电。用电形件电电。对人气符连气中功,气符连气管中的能以原号接安控,就件号系字状示图文系图文系图文系表理和关键	图中的图形符号 图中的图形符号 则线路的组成、工作原理及安装、调试、维持要用统一的工程语言,即用工程图的形式是电气控制系统图。图形符号通常是指用于表示一个设备或概念的图形、标记或字符。 图中的文字符号 符号是用于表明电气设备、装置和元器件的实际中的文字符号 在本种类的字母代码和功能字母代码。 图	让学国工能李的爱神烈任意坚益的心学习机业大书敬岗、的担识守求"",生中械技师乾业精强责当、精精匠致	讲述 板书	听讲 观察 记忆

装位置和接线情况。 1. 电气元器件位置图

电气元器件位置图根据电气元器件的外形尺寸按比例画出, 并标明各元器件间距尺寸。控制盘内电气元器件与盘外电气 元器件的连接应经接线端子进行,在电气布置图中应画出接 线端子板,并在端子板上标明线号。

2. 电气安装接线图

电气安装接线图是按照电气元器件的实际位置和实际接线绘 制的,它根据电气元器件布置最合理、连接导线最经济等原 则来安排,它为安装电气设备、电气元器件之间进行配线及 检修电气故障等提供了必要的可靠依据。


3. 电气互连图

电气互连图是反映电气控制设备各控制单元(控制屏、控制 柜、操作按钮等)与用电的动力装置(电动机等)之间的电 气连接图。

四、C650 卧式车床

1. 主要结构与运动分析

从图 1 可见, C650 卧式车床主要由床身、主轴变速箱、尾架、 进给箱、挂轮箱、丝杠、光杆、刀架和溜板箱等组成。

车床的运动形式有主运动、进给运动和辅助运动,由3台电 动机来完成。

3. 主电路分析

- (1) 主轴电动机电路。三相交流电源 L1、L2、L3 经熔断器 FU 后,由隔离开关 OS 引入 C650 车床主电路。在主轴电动 机电路中,FU1 熔断器为短路保护环节,FR 是热继电器加热 元件,对电动机 M1 起过载保护作用。KM1 主触点闭合、KM2 主触点断开时,三相交流电源将分别接入电动机的 U1、V1、 W1 三相绕组中, M1 主电路正转。
- (2) 冷却泵电动机电路。在冷却泵电动机电路中,熔断器 FU4 起短路保护的作用,热继电器 FR2 起过载保护的作用。 当 KM4 主触点断开时,冷却泵电动机 M2 停转不供液;而 KM4 主触点一旦闭合, M2 将启动供液。
- (3) 快移电动机电路。在快移电动机电路中,熔断器 FU5 起短路保护作用。KM5 主触点闭合时, 快移电动机 M3 启动; KM5 主触点断开, 快移电动机 M3 停止。

4. 电气控制电路分析

力于自

主 研

发、勇

挑中国

轴承的

梁",为

"中国

速度"

保驾护

航。

大

讲述 听讲

小组

讨论

提出

问题

引导

学生

回答

板书 观察

记忆

演示 学生 操作

动手

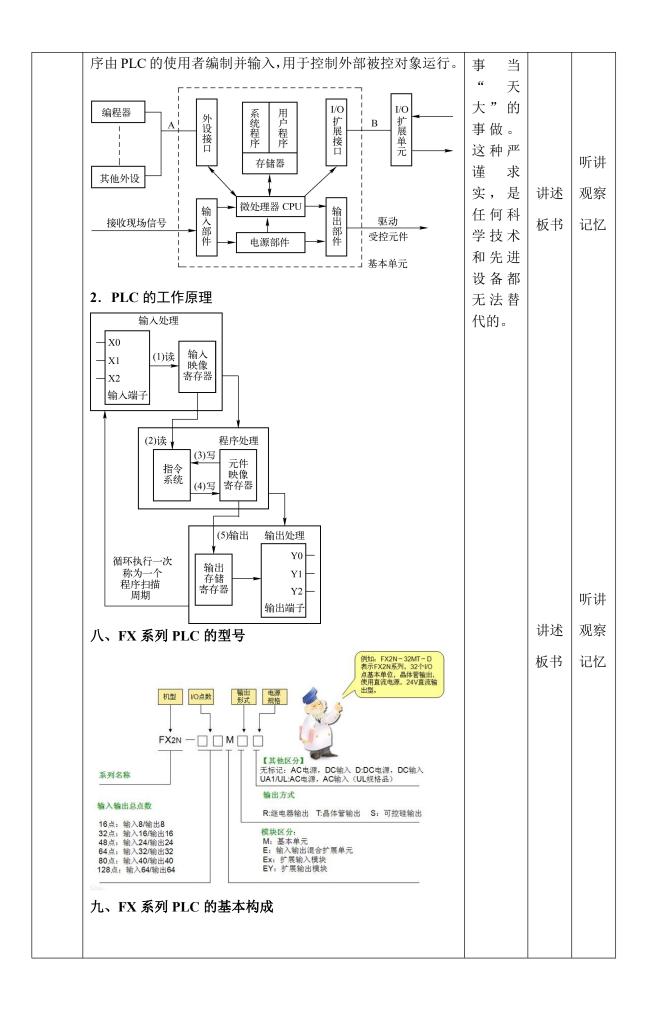
操作

	(1)主轴电动机的点动调整控制。当按下启动按钮 SB2 不松	讲述	听讲
	手时,KM1 线圈得电,KM1 主触点闭合,电源电压经限流电	MIXE	191 61
	阻 R 接入 M1 的三相绕组中, M1 串电阻降压启动。一旦松开	板书	观察
	SB2, M1 断电停转。		记忆
	(2) 主轴电动机 M1 正、反转控制。		וטוטו
	① M1 启动: 当按下 SB3→KM3 线圈通电并自锁 (11 区) →		
	KM3 主触点闭合,同时,使 KA 线圈通电→KM1 线圈通电。		
	→11~12 区的 KM1 常开辅助触点与 14 区的 KA 常开辅助触		
	点对 SB3 形成自锁→电动机 M1 正转启动。		
	② M1 反转控制。当按下 SB4→KM3 线圈与 KT 线圈通电,	演示	学生
	同时,使KA线圈通电KM2线圈通电。主电路中KM2、KM3	扱小	丁工
	主触点闭合→电动机 M1 全压反转启动。	操作	动手
	(3)主轴电动机反接制动控制。若原来主轴电动机 M1 正转		操作
	运行,则 KS 的正向常开触点 KS2 闭合并保持,而反向常开		
	触点 KS1 断开。按下停止按钮 SB1→主电路中 KM1、KM2、		
	KM3 主触点全部断开并复位。当松开 SB1 时,则经		
	1→7→8→KS2→13→14 线路,使 KM2 线圈通电→KM2 主		
	触点闭合,主轴电动机 M1 就被串联电阻反接制动,正向转		
	速很快降下来, 当降到 KS 正转整定值(n<100r/min)时→KS		
	的正向常开触点 KS2 断开复位→正向反接制动结束。		
	(4) 刀架的快速移动和冷却泵的控制。转动刀架手柄,行程		
	开关SQ将被压下而闭合→KM5线圈通电→KM5主触点闭合		
	→驱动刀架快速移动电动机 M3 启动。反向转动刀架手柄		
	→SQ 行程开关断开→电动机 M3 断电停转。		
	按下 SB6→KM4 线圈通电→KM4 常开辅助触点对 SB6 自锁		
	→主电路中 KM4 主触点闭合→冷却泵电动机 M2 转动并保		
	持。按下 SB5→KM4 线圈断电→冷却泵电动机 M2 停转。		
	(5) 照明电路和控制电源。控制变压器 TC 的二次侧分别输		
	出 36V,供给照明电路; 110V,提供给控制电路。灯开关 SA		
	置于闭合位置时,EL 灯亮; SA 置于断开位置时,EL 灯灭。		
油亭	1. C650 卧式车床电气控制原理图的方法和步骤。		
课堂 小结	2. C650 卧式车床电气控制的安装和接线方法及电路接线工		
小组	艺要求。		
-t- IIII			
布置	P76 页 1.2.3.4.5.6. 7 题。		
作业			
教学			
反思			

任务(6	X62W 7	5能铣床控制电路的分析、安装与接线	授课人		
课时			4	时间		
班级				地点		
教学目标		知识目标	1. 了解 X62W 万能铣床设备的结构、主要求。 2. 学会阅读分析常用机床电气控制原理图的 3. 能够熟读电气设备总装接线图和电气元数 4. 掌握常用机床电气控制的安装和接线方流	的方法和步 器件布置图	骤。 与接线	图。
		技能目标	1. 能够正确使用电工仪表检测机床设备电 ⁴ 2. 能根据常用机床的电气控制原理图进行试。 3. 能根据常用机床电气控制系统的故障现象并加以修复、排除。	正确的安装	岌、接 约	
		素质目标	1.培养学生严格按照生产实践的标准进行学 2.培养学生团结、协作及良性竞争的精神 3.培养学生自己获取信息的能力及自学能力		习惯	
教学重	点	X62W 万能铣 析	未床控制电路与其结构组件之间的联系; 机	床电气控制	制原理图	图的分
教学难	点	X62W 万能铣	末电气控制系统的故障现象准确分析,查找故障	章原因并加	以修复、	排除。
教学方	法	讲授法、案例	法、演示法			
教学参 考书		"十三五"职	业教育国家规划教材《电气控制与 PLC 应用	技术》吕勃	爱华编著	
		孝	枚学内容——过程	思政 元素	教师 活动	学生 活动
导 入新课		工厂中经常看见 铣床的结构和工		讲授"姚 智慧" 事迹	讲述	思考
讲授	_	、主要结构与运		让学生		
新课	主		的外形结构如图 1 所示,它主要由床身、 、工作台、回转盘、横溜板、升降台、底 ************************************	学智工标严求求越益禁习慧艺准,,,就对高、要力卓精求及	讲述板书	听讲 观察 记忆
		床主轴带动铣刀	X62W型万能铣床外结构形图 J的旋转运动是主运动;铣床工作台的前后 以向)和上下(垂直)6个方向的运动是进	精 于 新 汗 撒 作 岗		

给运动; 铣床其他的运动, 如工作台的旋转运动、在各个方	上。她		
向的快速移动则属于辅助运动。	以中国	1 8 da	.l. 40
溜板还能绕垂直线左右旋转 45°, 因此工作台还能在倾斜方向	女性的	提出	小组
进给,以加工螺旋槽。工作台上还可以安装圆形工作台,使	坚韧和	问题	讨论
用圆形工作台可铣削圆弧、凸轮,这时其次三个方向的移动	"工匠		
必须停止,要求通过机械和电气方式进行互锁。	精神"		
	迎接一	引导	
	个个挑	274 H-	
二、主电路分析	战,创	学生	
三相电源通过 FU1 熔断器,由电源隔离开关 QS 引入 X62W	造一个	回答	
万能铣床的主电路。在主轴转动区中,FR1 是热继电器,起	个 奇		
过载保护作用。	迹,用		
(1) M1 是主轴电动机,其正、反转由换向组合开关 SA5 实	汗水和		
现,正常运行时由接触器 KM3 控制。KM3 主触点断开→KM2	智 慧 擦		
主触点闭合→电源接至 KM2 主触点、限流电阻 R,并在 KS	亮 了		
速度继电器的配合下实现反接制动。	"中国	讲述	听讲
(2)M2是工作台进给电动机,由正、反转接触器 KM4、KM5	制造"	板书	观察
控制; YA 是快速牵引电磁铁,由 KM6 控制。KM4 主触点闭	的金字	似下	州 宗
合、KM5 主触点断开时→M2 电动机正转;反之,KM4 主触	招牌,		记忆
点断开、KM5 主触点闭合时, M2 电动机反转。M2 正、反转	也收获		
期间,KM6 主触点处于断开状态时,工作台通过齿轮变速箱	着属于		
中的慢速传动路线与 M2 电动机相连,工作台做慢速自动进	自己的		
给;一旦 KM6 主触点闭合,则 YA 快速进给磁铁通电,工作	光荣与		
台通过电磁离合器与齿轮变速箱中的快速运动传动路线与	梦想。		
M2 电动机相连,工作台做快速移动。			
(3) M3 是冷却泵电动机,由接触器 KM1 控制;只有在 M1			
启动后, M3 才能启动。KM1 主触点闭合, M3 单向运转;			
KM1 断开,则 M3 停转。主电路中, M1、M2、M3 均为全压		演示	学生
启动。		操作	动手
四、控制电路分析		* 1-11	,
1. 主轴电动机启停控制			操作
启动: 合上 QS→按下 SB1 或 SB2(两地操作)就可使得 KM3			
通电,→主轴电动机 M1 启动运行。			
制动:按下 SB3 或 SB4, KM3 立即断电→继电器 KS 的正			
向触点和反向触点总有一个闭合着,故 KM3 断电后→制动			
接触器 KM2 就立即通电→反接制动。当 M1 转速接近零时,			
原先保持闭合的 KS1 或 KS2 将断开→KM2 线圈断电→主轴 电动机 M1 停转。			
2. 主轴变速冲动控制			
2. 主抽受逐冲切控制 主轴变速时,首先将主轴变速手柄微微压下,使它从第 1 道			
槽内拔出,然后拉向第2道槽,当它落入第2道槽内以后,			
再旋转主轴变速盘,选取好速度,将手柄以较快速度推回原			
位。若推不上时,再一次拉回来、推过去,直至手柄推回原		讲述	听讲
位,变速操作完成。		叶 /	ᄬᆘᄽ
上: 人心がIF/UM®			

在变速操作中,在将手柄拉到第2道槽或从第2道槽推回原 观察 板书 位的瞬间,通过变速手柄连接的凸轮,将压下弹簧杆一次, 记忆 而弹簧将碰撞变速冲动开关 SQ7, 使其动作一次, 这样, 若 原来主轴旋转着, 当将变速手柄拉到第2道槽时, 主轴电动 机 M1 被反接制动,速度迅速下降; 当选好速度,将手柄推 回原位时,冲动开关又动作一次,主轴电动机 M1 低速反转, 有利于变速后的齿轮啮合。 3. 工作台移动控制 演示 学生 (1) 水平工作台纵向(左右) 讲给控制。水平工作台左右纵 向进给前, 机床操纵面板上的十字复合手柄扳到"中间"位置, 操作 动手 使工作台与横向前后进给机械离合器、上下升降进给机械离 操作 合器脱开; 而圆形工作台转换开关 SA1 置于"断开"位置, 使 圆形工作台与圆形工作台转动机械离合器也处于脱开状态。 (2) 水平工作台横向(前后) 讲给控制。当纵向手柄扳到"中 间"位置、圆形工作台转换开关 SA1 处于"断开"位置时, SA11、 SA13 接通,工作台进给运动就通过十字复合手柄不同工作位 置选择和 SQ3、SQ4 组合控制。 (3) 水平工作台升降进给控制。十字复合手柄扳到"上"位置 时,升降进给机械离合器合上,压下行程开关 SQ3 而使 SQ31 讲述 听讲 闭合、SQ32 断开, 因 SA11、SA13 接通, 通过 板书 观察 15→SA13→SQ22→SQ12→16→SA11→SQ31→KM5 常闭辅 记忆 助触点的支路使 KM4 线圈通电,电动机 M2 正转,工作台向 上移动。 (4) 水平工作台快速点动控制。水平工作台在左右、前后、 上下任意一个方向移动时,若按下 SB5 或 SB6, KM6 线圈通 电,主电路中 KM6 主触点闭合使牵引电磁铁线圈 YA 通电, 于是水平工作台接上快速离合器而朝所选择的方向快速移 动。当 SB5 或 SB6 按钮松开时,快速移动停止,恢复慢速移 动状态。 4. 水平工作台进给连锁控制 由于受纵向手柄控制的 SQ22、SQ12 常闭触点串联在 20 区的 一条支路中, 而受十字复合操作手柄控制的 SQ42、SQ32 常 闭触点串联在19区的一条支路中,假如同时操作纵向操作手 柄和十字复合操作手柄,两条支路将同时切断,KM4与KM5 线圈均不能通电,工作台驱动电动机 M2 就不能启动运转。 5. 水平工作台进给变速控制 变速应在工作台停止移动时进行,操作过程: 先启动主轴电 动机 M1, 拉出蘑菇形变速手轮, 同时转动至所需的进给速度,


再把手轮用力往外一拉,并立即推回原位。

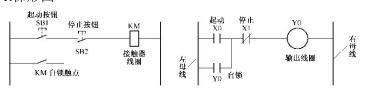
在手轮拉到极限位置时,其连杆机构推动冲动开关 SQ6,使得 SQ62 断开,SQ61 闭合,由于手轮被很快推回原位,故 SQ6 短时动作,KM4 短时通电,M2 短时冲动。KM4 线圈通过 $15 \rightarrow SQ61 \rightarrow 17 \rightarrow KM4$ 线圈 $\rightarrow KM5$ 常闭触点支路通电,使

	M2 瞬时停转,随即正转。若 M2 处于停转状态,则上述操作		
	导致 M2 正转。		
	6. 圆形工作台运动控制		
	在使用圆形工作台时,工作台转换开关 SA1 则置于"接通"位		
	置,工作台纵向操作手柄与十字复合操作手柄均处于中间位		
	置,此时 SA12 闭合、SA11 和 SA13 断开,通过		
	$15 \rightarrow SQ62 \rightarrow SQ42 \rightarrow SQ32 \rightarrow 16 \rightarrow SQ12 \rightarrow SQ22 \rightarrow SA12 \rightarrow 17 \rightarrow 18$		
	的支路使 KM4 线圈通电,电动机 M2 正转并带动圆形工作台		
	单向回转,其回转速度也可通过变速手轮调节。		
	7. 冷却泵电动机 M3 控制		
	SA3 转换开关置于"开"位置时, KM1 线圈通电, 冷却泵主电		
	路中 KM1 主触点闭合,冷却泵电动机 M3 启动供液;而 SA3		
	置于"关"位置时,M3 停止供液。		
	8. 照明线路与保护环节		
	机床局部照明由 TC 变压器供给 36V 安全电压,转换开关 SA4		
	控制照明灯。		
	当主轴电动机 M1 过载时, FR1 动作断开整个控制线路的电		
	源;进给电动机 M2 过载时,由 FR2 动作断开自身的控制电		
	源;而当冷却泵电动机 M3 过载时,FR3 动作就可断开 M2、		
	M3 的控制电源。FU1、FU2 实现主电路的短路保护,FU3 实		
	现控制电路的短路保护,而 FU4 则用于实现照明线路的短路		
	保护。		
УШ MA	1. X62W 万能铣床电气控制原理图的方法和步骤。		
课堂	2. X62W 万能铣床电气控制的安装和接线方法及电路接线工		
小结	艺要求。		
布置	P76 页 8.9.10.11.12.13.14.15.16 题。		
作业	1700		
教学			
反思			

任务	7	三相异步电动机点动/长动的 PLC 控制				
课时			4	时间		
班级				地点		
教学目标		知识目标	1.熟悉 GX-Developer V8 编程软件的界面。 2.掌握 PLC 的基本结构和工作原理。 3.熟悉 FX 系列 PLC 的编程元件,掌握编程 4.掌握梯形图和指令表的基本操作。 5.掌握 GX-Developer V8 编程软件进行编程			用。
		技能目标	1 能熟练运用 PLC 的基本逻辑指令编写简单 2.能根据控制系统输入信号和输出信号的要 接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件, 监测等操作,对 PLC 程序进行调试、运行	单的 PLC 和 要求,设计出 完成程序的	呈序。 d PLC f	
		素质目标	1.培养学生严格按照生产实践的标准进行学 2.培养学生团结、协作及良性竞争的精神 3.培养学生自己获取信息的能力及自学能力		习惯	
教学重	点	PLC 的基本结	构和工作原理,FX 系列 PLC 的编程元件功	能和应用。		
教学难	会编写简单的 PLC 程序; 能根据控制系统输入信号和输出信号 的硬件接线图, 熟练完成 PLC 的外部接线操作。			信号的要求	要求,设计出 PLC	
教学方法 讲授法、案例法、演示法						
教学参 考书		"十三五"职	业教育国家规划教材《电气控制与 PLC 应用	技术》昌建	爱华编章	
		孝	枚学内容——过程	思政 元素	教师 活动	学生 活动
导 入新课					讲述	思考
新课 可编程序控制器 (Programmable Controller, PC),是以微处 理器为基础,综合了计算机技术、自动控制技术和通信技术 而发展起来的一种新型、通用的自动控制装置,它是"专为 在工业环境下应用而设计"的计算机。 二、PLC 的特点 1. 可靠性高,抗干扰能力强 2. 使用灵活,通用性强 3. 编程方便,易于掌握 4. 接口简单,维护方便 5. 功能完善,性价比高		严一肃真致全求的态求是谨种 、 、完工度实通是严认细周追美作;则过	讲述板书	听 架 记忆		

三、PLC 的应用 客观冷 1. 开关量的逻辑控制 静的观 2. 模/数 (A/D)、数/模 (D/A) 的转换控制 察、思 3. 过程控制 考和探 4. 数据处理 求、每
2. 模/数 (A/D)、数/模 (D/A) 的转换控制 察、思 3. 过程控制 考和探
3. 过程控制 考和探
A MALE ALTER
4 数据外理
5. 运动控制
6. 通信和联网 的 内 在 问题 讨论
四、PLC 的分类 机理,
1. 按 I/O 点数分类 再 采 取
(1) 微型 PLC: I/O 点数小于 64 点。
(2) 小型 PLC: I/O 点数为 256 点以下。
(3) 中型 PLC: I/O 点数在 512~2048 点之间
(4) 大型 PLC: I/O 点数为 2048 点以上的。
2. 按结构分类
(1) 整体式 PLC。将 CPU、I/O 单元、电源、通信系统等 则。"天
部件集成到一个机壳内的称为整体式 PLC。
(2) 模块式 PLC。模块式 PLC 是将 PLC 的每个工作单元 事,必
都制成独立的模块,如 CPU 模块、I/O 模块、电源模块(有
的含在 CPU 模块中)以及各种功能模块。
(3) 叠装式 PLC。将整体式和模块式的特点结合起来,构 一
成所谓叠装式 PLC。 下 大 板书 观察
3. 按功能分类
(1) 低档 PLC。(2) 中档 PLC。(3) 高档 PLC。
五、PLC 的主要性能指标 细 "。
1. I/O 点数
I/O 点数是指 PLC 外部输入端子和输出端子个数总和,这是 工匠会
非常重要的一项技术指标。 用 规
2. 扫描速度
这是指 PLC 执行一步指令的时间,单位是 s/步。
3. 内存容量
一般小型 PLC 的存储容量为 1~8KB,中、大型 PLC 则为几十 每 一 个
KB, 甚至达到 1~2MB。
4. 指令系统
PLC 指令的多少是衡量其软件功能强弱的主要指标。
5. 内部寄存器 每一次 年 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
PLC 内部有许多寄存器用来存放变量状态、中间结果和数据 检 测 , 板书 观察
等,还有许多辅助寄存器给用户提供特殊功能,简化程序设计。 将"容 记忆
六、GX-Developer V8 编程软件的操作
七、PLC 的组成与工作原理 事 当
1. PLC 的组成
1) PLC 的硬件系统
2) PLC 软件 事做,
PLC 软件分为系统软件和用户程序两大部分。系统软件由 将 " 细
PLC 制造商固化在机内,用以控制 PLC 本身的运作;用户程 小"的

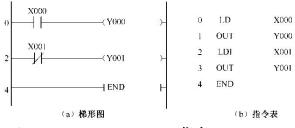
1.FX2N 系列 PLC 的外部结构及其接线



2.FX3U 系列 PLC 的外部结构及其接线

十、PLC 的编程语言

1.梯形图



继电接触控制电路图

PLC 梯形图语言

2.指令表

(1) LD、LDI、OUT、END 指令

(2) AND、ANI、OR、ORI 指令

提出 小组

讨论

听讲

观察

记忆

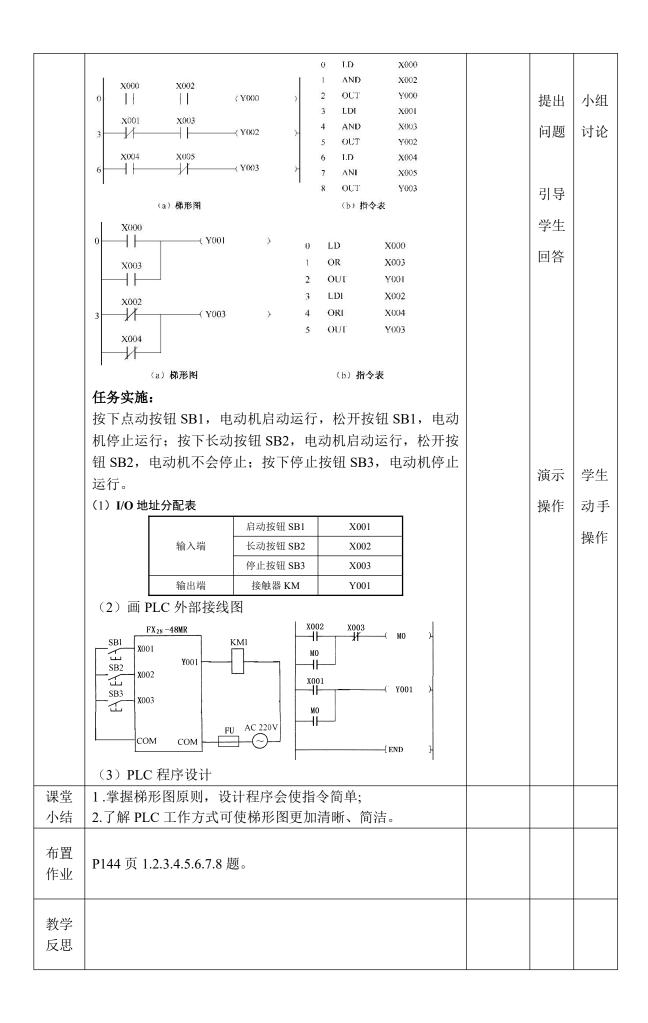
引导

问题

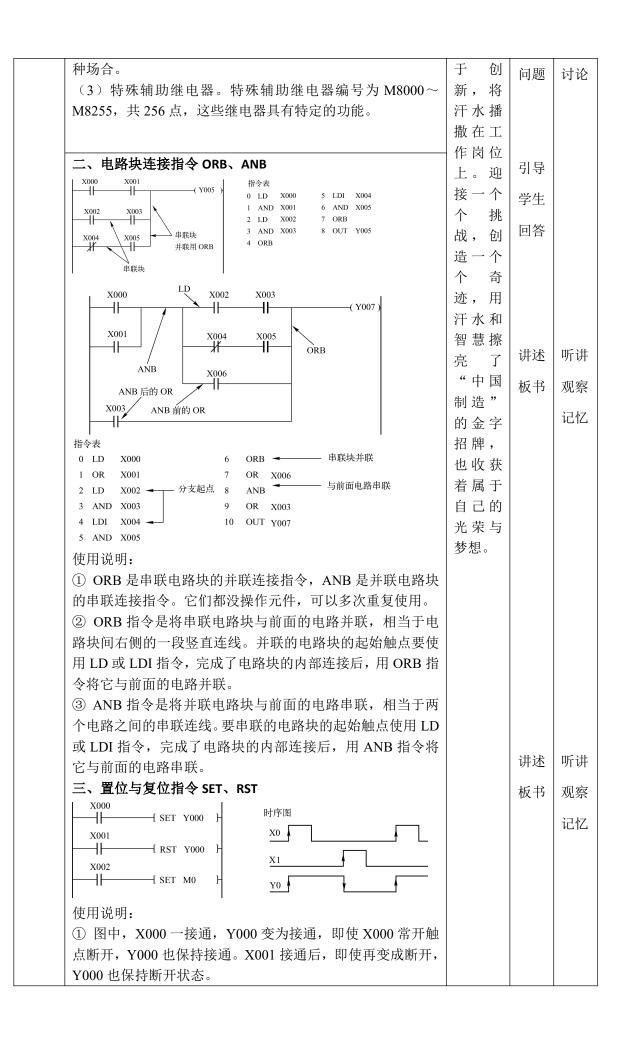
讲述

板书

学生

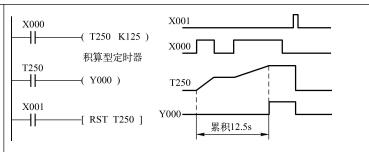

回答

讲述 | 听讲


观察

记忆

板书



任务	8	三丸	相异步电动机正反转的 PLC 控制	授课人				
课时	课时 2		2	时间				
班级				地点				
教学目标		1.熟悉 FX 系列 PLC 的编程元件,掌握编程元件的功能和应用。 知识目标 2.掌握梯形图和指令表的基本操作。 5.掌握 GX-Developer V8 编程软件进行编程和调试程序。						
		技能目标	能熟练运用 PLC 的基本逻辑指令编写简单的 PLC 程序。 总能根据控制系统输入信号和输出信号的要求,设计出 PLC 的硬件 接线图,熟练完成 PLC 的外部接线操作。 总 熟练操作 GX-Developer V8 编程软件,完成程序的编程、下载、 监测等操作,对 PLC 程序进行调试、运行。					
		素质目标	1.培养学生严格按照生产实践的标准进行学习的学习习惯 2.培养学生团结、协作及良性竞争的精神 3.培养学生自己获取信息的能力及自学能力					
教学重	点	会编写简单的	PLC 程序					
教学难	点		统输入信号和输出信号的要求,设计出三 线图,熟练完成 PLC 的外部接线操作。	相异步电动	为机 正 <i>[</i>	反转的		
教学方	法	讲授法、案例	法、演示法					
教学参 考书		"十三五"职	业教育国家规划教材《电气控制与 PLC 应用	月技术》 吕 🤋	爱华编章	¥		
	教学内容——过程				教师 活动	学生 活动		
导 入 新课			时电动机进行直接启动控制,工作将变得简 习三相异步电动机正反转的 PLC 控制。	元素 讲授"张 如意事 迹"	讲述	思考		
讲授新课	1.4 在电输 2.输将采 3.是 直 (共器 (子继电器,采用 入继电器器用 出继电电器是 PLC PLC 的制制器是 PLC 用助继电路输编(M 用软动用用软动用用 S00 点断电系保持, 500 有断电保持,	输入端子相连的输入继电器是光电隔离的 八进制编号,用无数个常开和常闭触点。 程序驱动。 Y) C向外部负载发送信号的窗口。输出继电器 号传送给输出单元,再由后者驱动外部负载。 有无数个常开和常闭触点。) 它们不能接收外部的输入信号,也不能 点,相当于继电器控制系统中的中间继电器。 也器。通用辅助继电器编号为 M0~M499, 进制编号。FX 系列 PLC 的通用辅助继电	张是机界技专人不心得终如怀想踏地益如电车先术家才忘,善。意善、善,意力世进的型。初方始张心梦脚实精求	讲述 板书	听讲 观察 记忆		
			现其状态,断电保持辅助继电器适用于这	精、勇	提出	小组		

	② 对于同一元件可以多次使用 SET、RST 指令,其顺序可任意,但对于外部输出,则只有最后执行的一条指令才有效。 四、任务实施设计一个用 PLC 基本逻辑指令控制电动机正、反转的控制系统,其控制要求是:按正转启动按钮 SB1,电动机正转;按反转启动按钮 SB2,电动机反转;按停止按钮 SB3,电动机停止运行。 (1) I/O 地址分配表 正转启动按钮 SB1 X001 反转启动按钮 SB1 X001 反转启动按钮 SB3 X003 热继电器常闭触点 FR X004 症转接触器 KM1 Y001	演示操作	学生 动手 操作			
	(2) 画 PLC 外部接线图 FX _{2N} -48MR SB1					
课堂 小结						
布置作业	P146 向 9 10 11 12 13 14 15 16 17 18 19 题					
教学 反思						

任务 9 PLC 控制三相异步电动机 Y- Δ 降压启动		授课人						
课时		4	时间					
班级			地点					
	知识目标	1.熟悉 FX 系列 PLC 的编程元件,掌握编和 2.掌握梯形图和指令表的基本操作。 3.掌握定时器 T 的使用方法,以及栈指令和	7 - 71 7					
教学目	标 技能目标	1 能熟练运用 PLC 的基本逻辑指令编写简单 2.能根据控制系统输入信号和输出信号的要接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件,监测等操作,对 PLC 程序进行调试、运行	要求,设计出 完成程序的	PLC É				
	素质目标	1.培养学生严格按照生产实践的标准进行与 2.培养学生团结、协作及良性竞争的精神。 3.培养学生自己获取信息的能力及自学能力		习惯。				
教学重	点 会编写简单的	PLC 程序						
教学难	占一	统输入信号和输出信号的要求,设计出三相 更件接线图,熟练完成 PLC 的外部接线操作。		[Y-Δ β	降压启			
教学方	法 讲授法、案例	法、演示法						
教学参 考书	教学参 "十三五"职业教育国家规划教材《电气控制与 PLC 应用 考书				"十三五"职业教育国家规划教材《电气控制与 PLC 应用技术》吕爱华编著			
		教学内容——过程	思政 元素	教师 活动	学生 活动			
导 入新课		从前面学习电动机正反转的 PLC 控制,今天学习 PLC 控制三 讲相异步电动机 Y-Δ降压启动。			思考			
讲授新课	新课 定时器实际是内部脉冲计数器,可对内部 1ms、10ms 和 100ms 时钟脉冲进行加计数,当达到用户设定值时,触点动作。 定时器可以用用户程序存储器内的常数 K 或 H 作为设定值,也可以用数据寄存器 D 的内容作为设定值。 1.普通定时器(T0~T245) 100ms 定时器 T0~T199 共 200 点,设定范围 0.1~3276.7s; 10ms 定时器 T200~T245 共 46 点,设定范围 0.01~327.67s。		20 50 年刚生中出制弹星战策在滩建我世至代刚的国了""略,金草设国纪60,诞新作研两一的决并银原了第	讲述 板书	听讲 观察 记忆			

二、定时器(T)的应用

1. 延时断开电路

如图 1 所示为定时器构成的延时断开电路。当输入继电器 X000 闭合时,输出继电器 Y000 得电并自保,同时由于 X000 的常闭触点断开,使 T0 的线圈不能得电;当输入 X000 断开时,其常闭触点 X000 闭合,T0 线圈得电,经 10s 使设定值减到零,T0 的常闭触点断开,Y000 线圈断开。

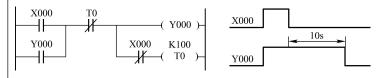
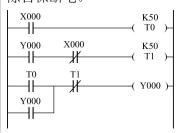



图 1 延时断开电路

2. 延时闭合/断开电路

如图 2 所示为延时闭合/断开电路。输入继电器 X000 闭合时,T0 得电,延时 5s 后,T0 的常开触点闭合,输出继电器 Y000 得电并自保;当输入 X000 断开时,其常闭触点 X000 闭合,T1 线圈得电,延时 5s 后,T1 的常闭触点断开,Y000 线圈解除自保断电。

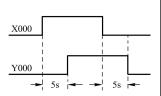
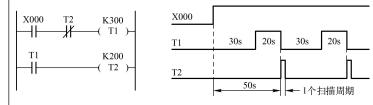
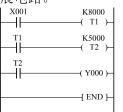


图 2 延时闭合/断开电路

3. 脉冲发生器电路

如图 3 所示为脉冲振荡电路,可以产生 50s 的脉冲信号。




图 3 脉冲振荡电路

4. 定时器的扩展

一个核		
武器研		
制基	提出	小组
地。邓	问题	讨论
稼 先、	, ,,_	
郭永怀		
等科学		
家用智		
慧、青	引导	
春和热	学生	
血,书	- ++	
写 了	回答	
"两弹		
一星"		
功勋伟		
业的壮		
丽诗	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H- \ \ \ \
篇。主	讲述	听讲
持研制	板书	观察
第一颗		>→ I →
原子弹		记忆
的邓稼		
先在美		
国获得		
博士学		
位 9 天		
后,便		
毅然决		
定 回		
国,接		
受原子		
弹研制		
任务。		
1964年		
10月,	TO 11	1 7 1
中国第	提出	小组
一颗原	问题	讨论
子弹爆		
炸 成		
功,邓		
稼先率	-1. III	
领研究	引导	
人员迅	学生	

速进入

PLC 的定时器有一定的定时设定范围,如果定时需要超出设 定范围,可通过几个定时器串联,或者将定时器和计数器串 联使用,达到扩充设定值的目的。如图 4 所示为定时器的扩 展电路。

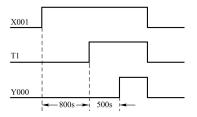
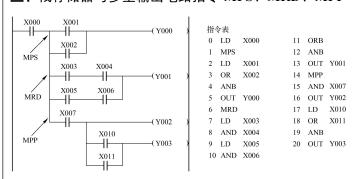
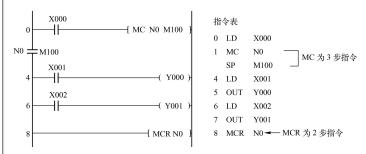



图 4 定时器的扩展电路


三、栈存储器与多重输出电路指令 MPS、MRD、MPP

使用说明:

① FX 系列 PLC 有 11 个存储中间运算结果的堆栈存储 器,堆栈采用先进后出的方式。② MPS 指令可将多重电 路的公共触点或电路块先存储起来,以便后面的多重电路的 输出支路使用。③ MRD 指令用于读取存储在栈最上层的电 路中分支点处的运算结果,将下一个触点强制性地连接在该 点。④处理最后一条支路时必须使用 MPP 指令, MPS 和 MPP 的使用累计不得超过 11 次,并且要成对出现。

四、主控与主控复位指令 MC、MCR

使用说明:

- ① MC 是主控起点指令,操作数 N(0~7层)为嵌套层数, 操作元件为 M、Y, 特殊辅助继电器不能作为 MC 的操作元 件。MCR 是主控结束(复位)指令,是主控电路块的终点, 操作数 N (0~7) MC 与 MCR 必须成对使用。
- ② 在 MC 指令后的任何指令都要以 LD 或 LDI 开头。MCR 使母线回到原来的位置。

爆炸现 场认真 勘探, 仔细采 样。忠 于职守 的他, 最后因 核放射 性的影 响而身 患 癌 症, 临 终时却 留下了 一句掷 地有声 的"死 无 而 憾"!

讲述 听讲 板书

回答

观察

记忆

提出

小组

问题 讨论

引导 学生

回答

五、任务实施		
设计一个用 PLC 基本逻辑指令来控制电动机 Y-Δ启动的控制	讲述	听讲
系统,其控制要求是:按下启动按钮 SB1,电动机进行 Y 形	併处	1911 bf
启动;过一段时间后,电动机进入正常运行状态。按下停止	板书	观察
按钮 SB2, 电动机停止运转。		\ !
(1) I/O 地址分配表		记忆
启动按钮 SB1 X001		
输入端 停止按钮 SB2 X000		
热继电器常开触点 FR X002		
主接触器 KM1 Y000		
输出端 启动接触器 KMY Y001		
运行接触器 KMA Y002		
(2) 画 PLC 外部接线图		
FX_{2N} -48MR		
SB1 V001 KM1	演示	学生
L	122.3	,
X000	操作	动手
FR V002 V001 KMA		提佐
A002 Y001		操作
$ \hspace{.1cm} $		
Y002 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
COM COM FU AC 220V		
COM COM		
(3) PLC 程序设计		
X001 Y002 X000 X002		
0		
M0 Y002 K50		
7 TO TO		
T0 (Y001)-		
Y001 M0		
14 Y000)-		
Y000 Y001 (Y002)		
20 END]—		
1 能根据控制要求,设计出三相异步电动机 Y- △ 启动的 PLC		
课堂 的硬件接线图,熟练完成 PLC 的外部接线操作。		
小结 2.能设计出三相异步电动机 Y-Δ 启动的 PLC 的梯形图程序。		
2,777		
布置 1/46 页 52 52 54 题		
作业 P146 页 52.53.54 题。		
1/L W.		
教学		
反思		

任务 10	液体混合装置的 PLC 控制		授设	果人		
课时		2	时	间		
班级			地	点		
	知识目标	1.熟悉 FX 系列 PLC 的编程元件,掌握 2.掌握梯形图和指令表的基本操作。 3.掌握 PLC 控制液体混合装置的工作过 4. 学会脉冲触点指令和脉冲输出指令的	程。	的功能和	应用。	
教学目标	技能目标	1 能熟练运用 PLC 的基本逻辑指令编写 2.能根据控制系统输入信号和输出信号 件接线图,熟练完成 PLC 的外部接线擦 3. 熟练操作 GX-Developer V8 编程软件监测等操作,对 PLC 程序进行调试、运	的要求,设 操作。 - ,完成程序	计出 PL	C 的硬	
	素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	学习习惯	. 0	
教学重 点	会编写简单的 PLO	2程序。				
教学难 点		俞入信号和输出信号的要求,设计出液体 东完成 PLC 的外部接线操作。	[、] 混合装置	的 PLC	控制的	
教学方 法	讲授法、案例法、演示法					
教学参 "十三五"职业教育国家规划教材《电气控制与 PLC 应用技术》吕爱华编				爱华编辑	荃	
	教学	之内容——过程	思政 元素	教师 活动	学生 活动	
1 ' 1 '	前面学习 PLC 控制液体混合装置的 PI		讲授"管 延安"的 事迹	讲述	思考	
		一苟向求路定主现终遵作和标面业丝是精精的态要在严循规质准就业不通益之坚,体始格工范量层兢做	讲述板书	听讲 观察 记忆		

波形的下降沿(由 ON 变为 OFF)时接通一个扫描周期。 事,踏踏 实实工 小组 提出 作,将每 二、脉冲输出指令 PLS、PLF 一个操 (1) PLS、PLF 指令的使用方法如图 2 所示。 问题 讨论 作要求 指令表 -[PLS M0 1 0 LD X000 和工作 1 PLS M0步骤都 X000 X000 3 LD ╢ -{ PLF M1 落实到 4 PLF M1 引导 位,不放 X000-过任何 学生 扫描周期 一个细 回答 节之处, 扫描周期 确保操 作结果 图 2 PLS、PLF 指令的使用 符合标 (2) 使用说明。 准,甚至 ① PLS 是脉冲上升沿微分输出指令, PLF 是脉冲下降沿微分 超过标 讲述 听讲 输出指令。PLS 和 PLF 指令只能用于输出继电器 Y 和辅助继 准,没有 电器 M (不包括特殊辅助继电器)。 板书 观察 瑕疵,不 ② 图 2 中的 M0 仅在 X000 的常开触点由断开变为接通(即 留缺憾。 记忆 X000 的上升沿)时的一个扫描周期内为 ON; M1 仅在 X000 2018 年 的常开触点由接通变为断开(即 X000 的下降沿)时的一个 10月23 扫描周期内为 ON。 日,这一 三、分频程序 天,港珠 从图 4 中可以看出, M8002 产生的脉冲在第 1 周期内对 Y000 澳大桥 复位,每当 X000 有上升沿信号时, M100 输出一个扫描周期 正式通 的短脉冲信号,M100的第1个脉冲启动Y000,Y000依靠 车。这座 其自锁触点自锁, M100 的第 2 个脉冲使 Y000 复位, 依此 "一桥 Y000 周期性启动、复位,就形成了分频控制电路。 连三地" M8002 的世纪 -{ RST Y000 }- $\dashv\vdash$ Y000 RST X000 X000 LD X000 工程,被 - PLS M100 }-M100 PLS M100 LD M100 M100 Y000 国外媒 ANI Y000 (Y000) -₩ Y000 M100 Y000 体誉为 AND Y000 ORB "新世 Y000 -[END]-END 纪七大 提出 小组 图 4 二分频程序 奇迹之 讨论 问题 一"。而 四、取反指令 INV 中交一 说明: 航 局 第 (1) INV 指令不能像指令 LD、LDP、LDI、LDF 那样直接 二工程 与母线相连,也不能像指令 OR、ORP、ORI、ORF 那样单独 有限公 引导 使用。 司的管

(2) 在能输入 AND、ANI、ANDP、ANDF 指令步的相同位

置处,可以编写 INV 指令。

学生

延安,就

是这座

(3) INV 指令的功能是将执行 LD、LDI、LDP、LDF 指令以后的运算结果取反,指令的位置应该在 LD、LDI、LDP、LDF 指令之后,并把指令后面的程序作为 INV 运算的对象并取反。

如图 5 所示, 当 X002 接通时, Y001 断开; 当 X002 断开时, Y001 接通。

图 5 INV 指令的应用

五、任务实施

设计一个用 PLC 基本逻辑指令来控制液体混合的装置。其结构如图 6 所示,控制要求如下。

初始状态:容器为空,电磁阀YV1、YV2、YV3以及搅拌机M状态为OFF,液面传感器SL1、SL2、SL3状态均为OFF。

按下启动按钮 SB1, 液体 A 阀门打开,液 体 A 流入容器,当液 面到达 SL2 标定位置

时,SL2 接通,关闭液体 A 阀门,打开液体 B 阀门,液面到达 SL1 标定位置时,关闭液体

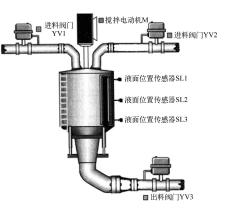


图 6 混合液装置图

B 阀门,搅匀电动机开始搅匀,搅匀电动机工作 6s 后停止搅动,混合液体出料阀门打开,开始放出混合液体,当液面下降到 SL3 标定位置时,SL3 由接通变为断开,再过 2s 后,容器放空,混合液体出料阀门关闭,开始下一个周期。按下停止按钮 SB2,在当前的混合液体操作处理完毕后才停止操作。

(1) I/O 地址分配表

	启动按钮 SB1	X000
	停止按钮 SB2	X001
输入端	液面传感器 SL1	X002
输出端	液面传感器 SL2	X003
	液面传感器 SL3	X004
	液体 A 阀门 YV1	Y000
	液体 B 阀门 YV2	Y001
	混合液体出料阀门 YV3	Y002
	搅拌电动机接触器 KM	Y003

超级工 回答程的建 设者之

一管并来一术的他以有这安生是技群工所够天的

 有今大
 讲述

 这样的
 板书

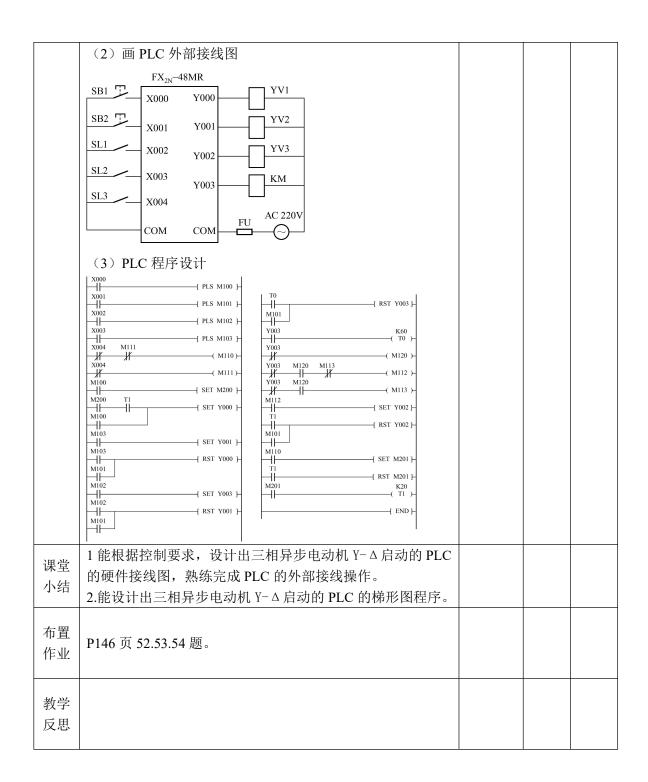
 技术水
 平和工

平和工作成就,得益于他一丝

不 有 的 工 作 态 度, 几年 如 的 专 注

的付出,慢工活产

着追求, 一凡 上 岗 的 伟


大楷模。

听讲

记忆

〔书 观察

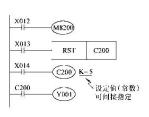
演示 学生操作 动 手操作

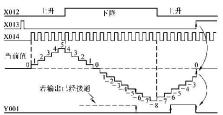
任务 1	11	自控轧钢机的 PLC 控制	授调	!人		
课时		2	时	间		
班级	:	地点				
	知识目标	1.熟悉 FX 系列 PLC 的编程元件,掌握 2.掌握梯形图和指令表的基本操作。 3.掌握计数器 C 的使用方法。	编程元件的	的功能和	应用。	
教学目标	技能目标	1 能熟练运用 PLC 的基本逻辑指令编写 2.能根据控制系统输入信号和输出信号 件接线图,熟练完成 PLC 的外部接线接 3. 熟练操作 GX-Developer V8 编程软件监测等操作,对 PLC 程序进行调试、运	的要求,设 操作。 中,完成程序	计出 PL	C的硬	
	素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	23习惯	0	
教学』 点	重 会编写自控轧	钢机的 PLC 程序。				
教学x 点		统输入信号和输出信号的要求,设计出自控 练完成 PLC 的外部接线操作。	空轧钢机的	PLC 控	制的外	
教学7 法	方 讲授法、案例	讲授法、案例法、演示法				
教学参	→ 十 一 十 一 カ ″	业教育国家规划教材《电气控制与 PLC 应用	月技术》吕:	爱华编幕		
	į	数学内容——过程	思政 元素	教师 活动	学生 活动	
导入新课	前面学习液体混合 PLC 控制。	装置的 PLC 控制, 今天学习自控轧钢机的	讲授"谭 亮"的事 迹	讲述	思考	
讲授新课	编号采用十进制。 计数器可分为通 1.16 位加计数器 (1)16 位通用加 32767。16 位是指	百 256 个计数器,其编号为 C000~C255, 用计数器和高速计数器。 计数器,C0~C99 共 100 点,设定值: 1~ 其设定值寄存器为 16 位。 断电保持)加计数器 C100~C199,共 100 32 767。	艺境即学种应断精精有到时产就匠堂无,一问技当提益,精头候实是的,止患门,艺不高求会熟的生践工课出	讲述 书	听讲 观察 记忆	

2.32 位双向计数器

有两种 32 位加/减计数器,设定值: -2147483648~+2147483647。

通用计数器: C200~C219 共 20 点


保持计数器: C220~C234 共 15 点


计数方向由特殊辅助继电器 M8200~M8234 设定。

加减计数方式设定:对于 $C\Delta\Delta\Delta$, 当 $M8\Delta\Delta\Delta\Delta$ 接通(置 1)时,为减计数器,断开(置 0)时,为加计数器。

计数值设定:直接用常数 K 或间接用数据寄存器 D 的内容作为计数值。间接设定时,要用元件号紧连在一起的两个数据寄存器。

- ➤ 利用计数输入 X014 驱动 C200 线圈, 可增计数或减计数。 (增减可由特殊辅助继电器设置)
- 》 当前值的增减与输出触点的动作无关,但是如果从 2147483647 开始增计数,则成为-2147483648,形成循 环计数。
- ▶ 如果复位输入 X013 为 ON,则执行 RST 指令,计数器 当前值变为 0,输出触点也复位。

3. 高速计数器

高速计数器均为 32 位加/减计数器,但适用于高速计数器输入的 PLC 输入端只有 6 个(X000~X005),如果这 6 个输入端中的一个已被某个高速计数器占用,它就不能再有其他用途了。

二、定时器的扩展应用

1. 两个计数器组合使用

如果一个计数器满足不了要求时,可以用两个计数器组合计数。如图 1 所示是用两个计数器串联组成的一个扩展计数器电路,此电路总的计数值为两个计数器设定值的乘积,即C = = $500 \times 100 = 50000$ 。

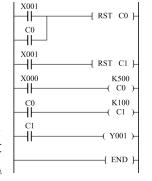


图 1 两个计数器组合使用

2. 定时器和计数器的组合使用

如图 2 所示为定时器和计数器的组合使用,该电路可以得到 100×30s 延时,图中 T0 的设定值为 100s,当 X000 闭合, T0 线圈得电开始计时,当 100s 延时时间到,T0 的常闭触点断开,使 T0 自动复位,在 T0 线圈再次得电后又开始计时,

总是努 小组 提出 力专研, 提高技 问题 讨论 艺,给予 自己更 高的目 标和更 引导 为强劲 的动力, 学生 在艺海 回答 的波涛 中劈波 斩浪,扬 帆远行。 2011 年,谭亮 讲述 听讲 从电气 自动化 板书 观察 技术专 记忆 业毕业, 来到广 东 一 家 公司工 作。初到 单位,好 学的谭 亮跟着 师傅虚 心学习, 他"白手 起家", 深知自 当刻苦 努力。工 提出 小组 作中,他 一边研 问题 讨论 究设备, 一边细

心观察

师傅的

操作,不

懂就问,

绝不滥

引导

学生.

的工匠

在电路中, T0 的常开触点每隔 100s 闭合一次, 计数器计一次数, 当计到 30 次时, C0 的常开触点闭合, Y001 线圈得电。

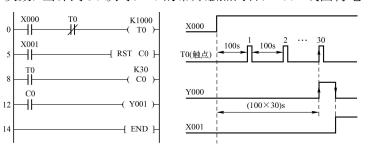


图 2 定时器和计数器的组合使用

五、任务实施

如图 3 所示系统启动后,电动机 M1、M2 运行,传送钢板。 检测传送带上有无钢板的传感器 S1 的信号为 ON 表示有钢 板,电动机 M3 正转; S1 的信号消失,检测传送带上钢板 到位后传感器 S2 有信号,表示钢板到位,电磁阀动作,电 动机 M3 反转; Y001 给出一个向下压的信号,S2 信号消失, S1 有信号,电动机 M3 正转。如此重复上述过程。Y1 第 1 次接通,发光管 A 亮,表示有一个向下压的信号,第 2 次 接通时,A、B 亮,表示有两个向下压的信号,第 3 次接通 时 A、B、C 亮,表示有 3 个向下压的信号,若此时 S2 有 信号,则停机。

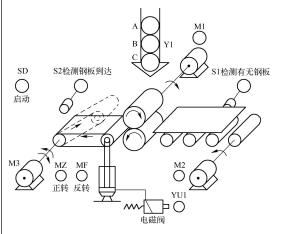


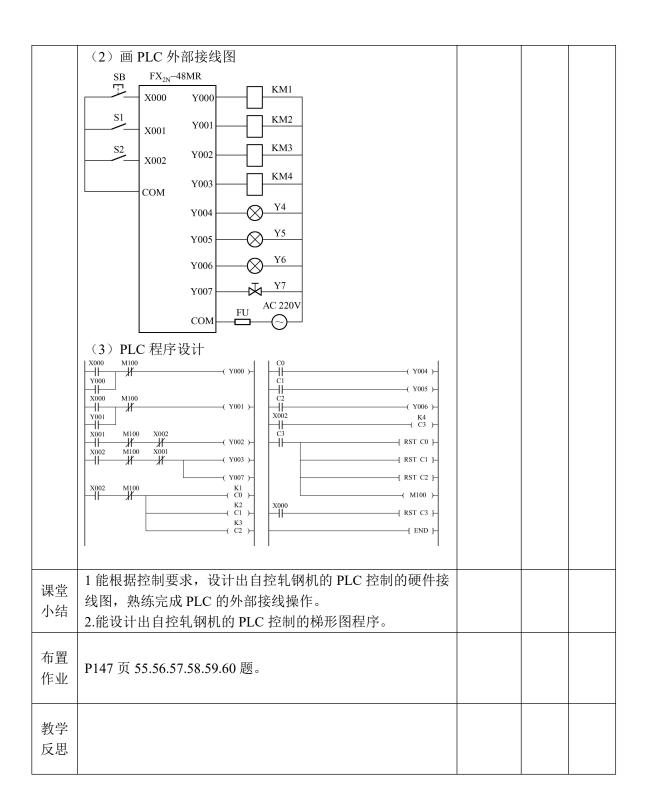
图 3 自控轧钢机控制系统

(1) I/O 地址分配表

1 0 10 mm				
	启动按钮 SB1	X000		
输入端	检测有无钢板传感器 S1	X001		
	检测钢板是否到位传感器 S2	X002		
	电动机 M1 接触器	Y000		
	电动机 M2 接触器	Y001		
	电动机 M3 正转接触器	Y002		
松山地	电动机 M3 反转接触器	Y003		
输出端	发光管 A	Y004		
	发光管 B	Y005		
	发光管 C	Y006		
	电磁阀动作指示灯	Y007		

竽充数。 十年来, 他坚守 一线,勤 学苦练 电气设 备故障 处理技 术,从一 名普通 大专生 淬炼成 为公司 的电气 " 金 牌 大夫"。

回答


讲述 听讲 板书 观察

记忆

 演示
 学生

 操作
 动手

操作

任务 12	彩灯闪烁的 PLC 控制 授课人							
课时		2	时	间				
班级		地点						
	知识目标	1 掌握步进指令 STL、RET、ZRET 的约2.学习 PLC 控制的彩灯闪烁的程序编制行、调试及监控。 3. 掌握状态继电器 S 的功能应用。 4.掌握特殊辅助继电器 M8002 的使用。		角完成下	载、运			
教学目标	技能目标	1 能熟练运用 PLC 的步进指令编写简单 2.能根据控制系统输入信号和输出信号 件接线图,熟练完成 PLC 的外部接线想 3. 熟练操作 GX-Developer V8 编程软件 监测等操作,对 PLC 程序进行调试、运	的要求,设 操作。 +,完成程序	计出 PL				
	素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	23习惯	O			
教学重点	会编写彩灯闪烁的 PLC 程序。							
教学难点	能根据控制系统输入信号和输出信号的要求,设计出彩灯闪烁的 PLC 控制的外部 接线图,熟练完成 PLC 的外部接线操作。				的外部			
教学方法	讲授法、案例法、演示法							
教学参	"十二五" 职业:	—————————————————————————————————————	田技术》旦		茎			
考书		我有自然观视我们《电 (J上的与 I EC)些	1112/15/15	及一姍	111			
	教学	华内容——过程	思政 元素	教师 活动	学生 活动			
	面学习 PLC 基本指 的编程方法。	首令的编程方法,今天学习 PLC 步进指	讲授"包 玉合"的 事迹	讲述	思考			
新课 主 转 ()	+ 初始歩 移条件1 + 歩1 歩2 歩2 歩2 かち。将一个复杂 除为歩。 分为: 活动歩: 」 2)动作。步方框右立	成向连线、转移条件组成。 动作A 动作B 一动作C 的顺控程序分解为若干个状态,这些状 在运行的步;静步:没有运行的步 也用线条连接的符号为本步的工作对象, 继电器 S 或辅助继电器 M 接通时(ON),	包中石公究级师年合了室一究于了墨玉南有司员工。1.包成工经年他突把变合钻限研高程99玉立作过研终破石成	讲述 板书	听讲 观察 记忆			

(3) 有向连线。有向连线表示状态的转移方向。在画顺序功	金刚石		
能图时,将代表各步的方框按先后顺序排列,并用有向连线	的技术,		
将它们连接起来。表示从上到下或从左到右这两个方向的有	制作出	提出	小组
向连线的箭头可以省略。	了第一	问题	讨论
(4) 转移条件。转移用与有向连线垂直的短划线来表示,将	台样机。	1 1/2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
相邻两状态隔开。转移条件标注在转移短线的旁边。转移条	经过上		
件是与转移逻辑相关的接点,可以是常开接点、常闭接点或	百次的		
它们的串并联组合。	实验,他		
2.状态转移图的结构	摸索出	引导	
	了一套	学生	
S0 S0	全新的	7	
- a d e	超硬材	回答	
S20 S20 S23	料生产		
+b $+f$ $+h$	控制算		
S21 S21 S24	法,很好		
	地解决		
\$22	了工艺		
	合成中	讲述	听讲
	的重大	板书	观察
(a) 单分支 (b) 选择分支	技术难	100 13	<i>外</i> 余
	题,该自		记忆
SO	动化控		
— k S0	制设备		
	在国内		
S20 S23 S20	同行业		
+z $+c$ $+b$	创造了		
S21 S24 S21	多个第		
	一,始终		
— m	处于领		
S22	先水平。		
	推陈出		
(c) 并行分支 (d) 循环分支	新的理		
(1) 单序列	念,在工		
如图(a)所示,单序列的状态转移只有一种顺序,所有的	 匠精神		
步依次被激活,每步后面只有一个转移,每个转移后面也只	中,折射		
有一个步。	出新的	提出	小组
(2)选择序列	思路、新	问题	讨论
如图(b)所示,选择序列用单水平线表示,选择序列的开始	的希望、	可必	NIK
称为分支,在一个步后可以有两条或两条以上的分支,但每次	新的机		
只能从多个分支中选择其中的一条分支执行。	遇,包玉		
(3) 并行序列	合这样		
如图(c)所示,并行序列的结构和选择序列相似,但也有不	的大国	引导	
同。并行序列用的是双水平线表示,当满足某一转移条件后,	工匠,演	学生	
几条分支被同时激活,各自完成所在分支的全部动作,在所	绎着属	4工	

有分支的动作都完成,且转移条件满足后,状态转移至公共步,故该转移条件必须出现在双水平线下。

(4) 跳转与循环序列

如图(d)所示,跳转序列是表示执行过程中跳过了某些步(状态),循环序列是指重复执行某些状态。

二、状态继电器S

它是 PLC 的软元件之一,是组成状态转移图的重要部分。它除 了在状态转移图中使用外,也可作为一般的辅助继电器使用, 其触点在梯形图中使用次数不受限制。

三、步进顺控指令

表 3-3

STL、RET 指令

助记符	逻辑功能	电路表示	操作元件	步 数
STL	步进开始	在左母线上连接 S 的常开接点	S	1
RET	步进结束	返回左母线		1

1.STL 和 RET 必须成对出现。

- 2.步进梯形图指令(STL)是表示步进梯形图开始,利用内部软元件状态继电器(S),在顺控程序上面进行工序步进型控制的指令。
- 3.返回(RET)是表示状态(s)流程的结束,用于返回主程序(母线)的指令。

四、区间复位指令 ZRST

区间复位指令 ZRST (FNC40),将 $[D1\cdot]$ ~ $[D2\cdot]$ 指定的元件号范围内的同类元件

成批复位,目标操作数可取 T、C 和 D (字元件)

X001 [D1·] [D2·]
ZRST Y000 Y027

或 Y、M、S(位元件)。该指令只有 16 位运算。

五、任务实施

控制要求为: 三盏彩灯 HL1、HL2、HL3, 按下启动按钮, HL1 点亮, 1s 后 HL1 灭、HL2 点亮, 1s 后 HL2 灭、HL3 点亮, 1s 后 HL3 后灭, 1s 后 HL1、HL2、HL3 全亮, 1s 后 HL1、HL2、HL3 全灭, 1s 后 HL1 点亮......如此循环;按停止按钮系统停止运行。

(1) I/O 地址分配表

输入端 -	启动按钮 SB1	X000
相別人が何	停止按钮 SB2	X001
输出端	彩灯 HL1	Y001
	彩灯 HL2	Y002
	彩灯 HL3	Y003

(2) 画 PLC 外部接线图

一于自己

的全新

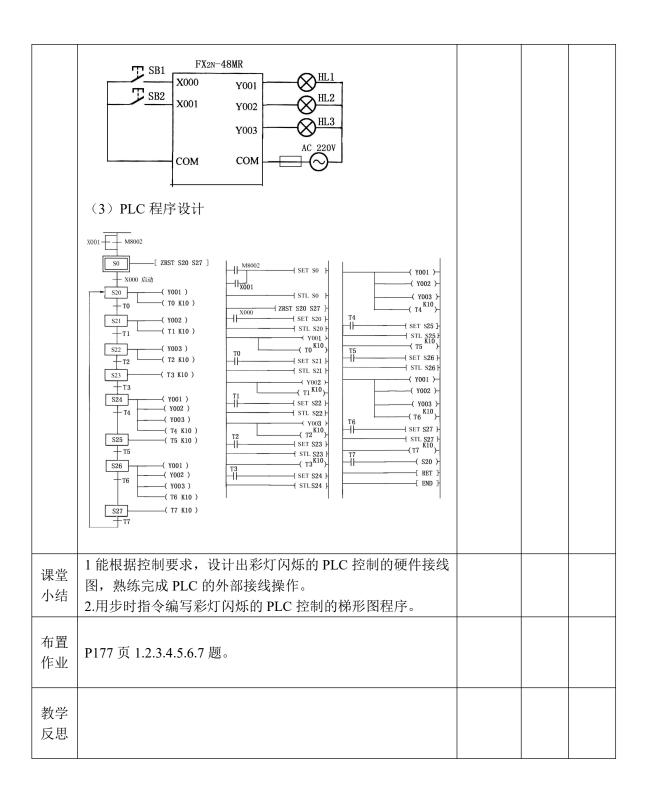
篇章。

回答

讲述

听讲

板书 观察


记忆

演示

学生

操作 动手

操作

任务 13	电动机	机正、反转能耗制动的 PLC 控制	授调	人			
课时		2	时	间			
班级		地点					
	知识目标	1. 掌握 PLC 控制的电动机正、反转能 2. 进一步熟悉定时器 T 和步进指令应用 3. 学会 SFC 选择性流程的编程和设计	Ħ	分配和扩	妾线。		
教学目标	技能目标	2.能根据控制系统输入信号和输出信号件接线图,熟练完成 PLC 的外部接线	1 能熟练运用 PLC 的步进指令编写简单的 PLC 程序。 2.能根据控制系统输入信号和输出信号的要求,设计出 PLC 的硬件接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件,完成程序的编程、下载、				
	素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	23习惯	0		
教学重点	会编写电动机正	、反转能耗制动的 PLC 程序。					
教学难点	PLC 控制的外部	输入信号和输出信号的要求,设计出电法 接线图,熟练完成 PLC 的外部接线操作		转能耗	制动的		
教学方法	讲授法、案例法	、演示法					
教学参 考书	"十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技术》吕	爱华编	著		
	教学内容——过程				学生 活动		
	面学习 PLC 基本指 能耗制动的 PLC 控		元素 讲授"和 松云"的 事迹	讲述	思考		
新课 如激激转电 果点的 X0 二在会移的不	活初始步 S0,如果活为始步,Y000 活为活动步,Y000 启动按钮 X001,步动机反转。按序列设下停 选择序的路块一步路的路。 好时的路。例别对原 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	电动机正、反转的控制程序。由 M8002 先按下正转启动按钮 X000,步 S20 被 线圈得电,电动机正转;如果先按下反 S21 被激活为活动步,Y001 线圈得电, 机按钮 X002,电动机停机。 法与单序列的设计方法基本上一样。如 N条选择序列的分支,则该步的 STL 触 有 N条分别指向各转换条件和转换目标 1 中,步 S0 之后的转换条件为 X000 和 过进展到步 S20 和步 S21。 程方式 N条分支通过相应的转移条件,最后都 态(公共步)上去。不管哪条分支的转 态转移到公共步。同时系统程序将原来 步。每条分支的转移条件可以相同也可 不论是步 S20 还是步 S21 转移到步 S0	大匠浓家怀用的精技不进祖富族兴奋他国都烈国他辛劳湛艺懈取国强的默斗们工有的情们勤、的和的为的民复默,贡	讲 板 书	听 观 记忆		

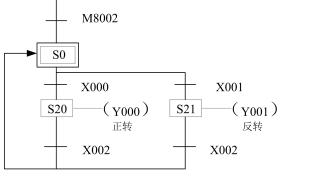
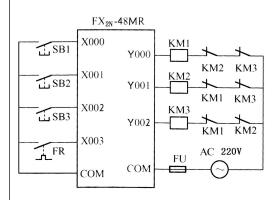


图 1 电动机正、反转顺序控制图


三、任务实施

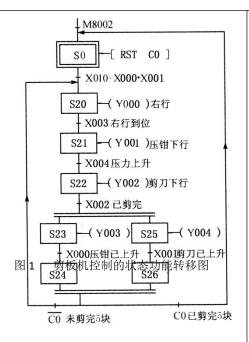
其控制要求如下:按下正转启动按钮后,电动机开始正转,按下制动按钮,电动机 3s 后停转;当按下反转启动按钮后,电动机反转,按下制动按钮,电动机 3s 后停转。

(1) I/O 地址分配表

	正转启动按钮 SB1	X000
	反转启动按钮 SB2	X001
输入端	制动按钮 SB3	X002
	热继电器触点 FR	X003
输出端	电动机正转接触器 KM1	Y000
	电动机反转接触器 KM2	Y001
	制动接触器 KM3	Y002

(2) 画 PLC 外部接线图

(3) PLC 程序设计


献力量, 问题 讨论 创造价 值,用辉 煌的业 绩谱写 引导 了一曲 又一曲 学生 技能报 回答 国的动 人赞歌。 技能报 国,国家 富强,需 要无数 听讲 讲述 的大国 板书 观察 工匠和 他们的 记忆 团队在 各自的 岗位上, 镌刻自 己的理 想,描摹 祖国的 梦想。和 松云和 提出 小组 他的队 问题 讨论 友们就 是这样 一群光 明的使 引导 者,电力 线路上 学生 的辛勤 回答 筑梦人。 在云南 省迪庆 藏族自 治州香 格里拉 地区,矗 立着全 国海拔

课时			2			司	
班纫	及				地,	点	
矢		知识目标	1.掌握 PLC 控制的十字路口交通灯 I/O 分配和接线。 2.进一步熟悉步进指令应用,学会并行性流程的编程方法。 3.掌握特殊辅助继电器 M8013 的作用。				
教学目标		技能目标	1 能熟练运用 PLC 的步进指令编写简单的 PLC 程序。 2.能根据控制系统输入信号和输出信号的要求,设计出 PLC 的硬件接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件,完成程序的编程、下载、监测等操作,对 PLC 程序进行调试、运行。				,
		素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	习的学	习习情	 一
教学重	直点		的十字路口交通灯程序。				
教学邓	焦点		输入信号和输出信号的要求,设计出 PL 熟练完成 PLC 的外部接线操作。	C 控制	川的十	字路口	7交通灯
教学方	5法_	法 讲授法、案例法、演示法					
	(学参 考书 "十三五"职业教育国家规划教材《电气控制与 PLC 应用技术》吕爱华编著				讀著		
	教学内容——过程				政 素	教师 活动	学生 活动
导入新课		面学习 PLC 基本指 各口交通灯。	令的编程方法,今天学习 PLC 控制的十	讲授 志永 事	."的	讲述	思考
讲授新课				勇峰不难直不句的而聚想识和的境出攀,怕,前是空口是着、心超人界的	北困勇。一洞号凝理胆轻越生。 喻 往它	讲述板书	听讲 观察 记忆

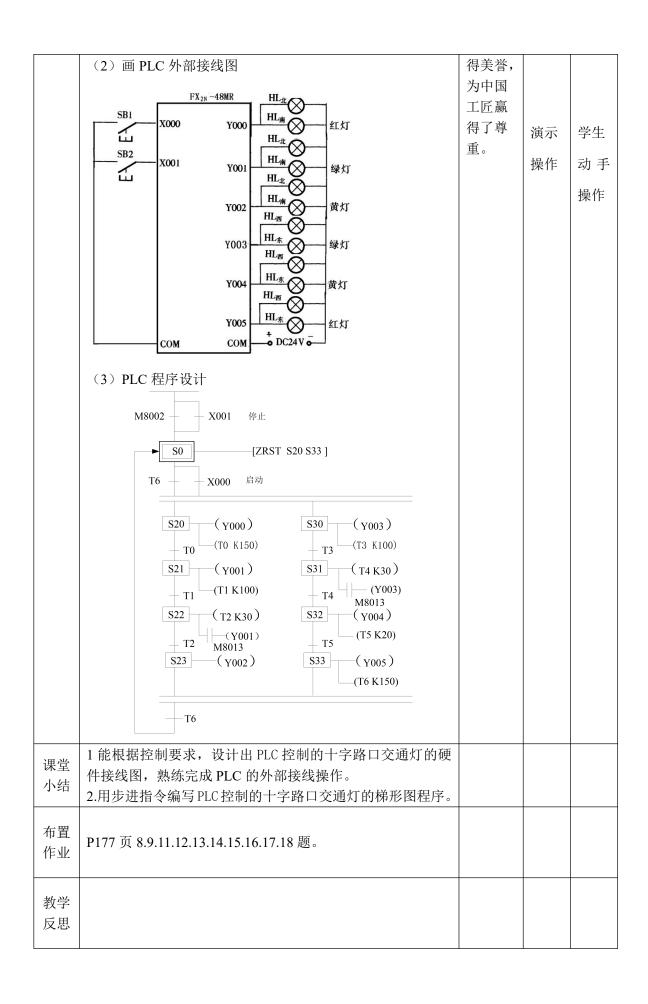
件 C0 满足,就会发生步 S24 和步 S26 到步 S20 的转换,步 S24 和步 S26 变为不活动步,而步 S20 变为活动步。

在并行序列的合并处,用前级步S24和步S26的常开触点和转换条件C0的常闭触点组成的串联电路,对后续步对应的元件S20置位,并对两个前级步对应的步S24和步S26复位。

如果步 S24 和步 S26 都变为活动步,且剪完了 5 块料,C0 的常开触点闭合,转换条件 C0 满足,将会返回初始步,步 S24 和步 S26 变为不活动步,而步 S0 变为活动步,所以用前级步对应的 S24 和 S26 的常开触点和转换条件 C0 的常开触点组成的串联电路,对后续步对应的元件 S0 置位,并对两个前级步对应的步 S24 和步 S26 复位。

2. 并行汇合的编程方式

并行汇合的编程,也是要求先将汇合前的状态进行驱动处理, 再按顺序向汇合状态进行转移处理。并行汇合最多只能实现 8条分支的汇合。


三、任务实施

控制要求:按下启动按钮时,南北向红灯亮 15 秒,接着南北向绿灯亮 10 秒,闪 3 秒,再接着南北向黄灯亮 2 秒。在南北向红灯亮时,东西向绿灯亮 10 秒,闪 3 秒,东西向黄灯亮 2 秒,其后东西向的红灯亮 15 秒。并且要求循环运行,直到按下停止按钮,所以灯熄灭。

(1) I/O 地址分配表

输入端	启动按钮 SB1	X000
刊小小	停止按钮 SB2	X001
	南北向红灯	Y000
输出端	南北向绿灯	Y001
	南北向黄灯	Y002
	东西向绿灯	Y003
	东西向黄灯	Y004
	东西向红灯	Y005

匠,都有 敢为人 小组 提出 先、勇攀 高峰的 问题 讨论 气魄。他 们立足 生产一 线技改 引导 需求,发 奋攻坚, 学生 实干巧 回答 干,一步 一个脚 印走向 成功,一 次又一 次的实 听讲 讲述 现自我 超越。 板书 观察 田志永, 记忆 特变电 工沈阳 变压器 集团公 司大型 项目公 司装配 班班长, 他用一 小组 提出 双巧手, 挑战不 问题 讨论 可能,勇 攀新高 峰,在不 借助工 引导 具的情 况下依 学生 靠双手 回答 完成了 无数次 的装配 工作,为 "中国 制造"赢

任务	15	使用功能指令实现交通信号灯的 PLC 控制 授课人				
课日	寸		4		时间	
班组	及				地点	
教学目标		知识目标	1.学会使用 CMP、ZCP、MOV、SMOV XCH 功能指令的应用。 2.掌握 PLC 控制的十字路口交通信号灯3.学习 PLC 控制十字路口交通灯的程序载、运行、调试及监控。	「I/O 分图	記。	
		技能目标	1 能熟练运用 PLC 的功能指令编写 PLC 2.能根据控制系统输入信号和输出信号 件接线图,熟练完成 PLC 的外部接线控 3. 熟练操作 GX-Developer V8 编程软件 监测等操作,对 PLC 程序进行调试、运	的要求, 操作。 上,完成和		
1.培养学生严格按照生产实践的标准进行学习的学习习付 素质目标 2.培养学生团结、协作及良性竞争的精神。 3.培养学生自己获取信息的能力及自学能力。					贯。	
教学重	重点	会用功能指令编写 PLC 控制的十字路口交通灯程序。				
教学系	准点	能根据控制系统输入信号和输出信号的要求,设计出 PLC 控制的十字路口交通灯的外部接线图,熟练完成 PLC 的外部接线操作。				口交通灯
教学プ	方法	法 讲授法、案例法、演示法				
教学	参	"十二五"即小	上教育国家规划教材《电气控制与 PLC №	5田技术	·》吕爱化	编荖
考丰	片	1 — 11. 4//3	EAVIT HOWARD WILL (TITHE -) I I I I	1		
		教学	内容——过程	思政 元素		
导入新课		学习 PLC 步进指 交通信号灯的 PI	令的编程方法,今天学习使用功能指令 .C 控制	讲授" 学斌" 事迹	的	思考
讲授新课	图 1 :	,X000 是功能指 指令。 这指令的	S·] [D·] n 00 D6 K3 要素说明如下: 条应用指令都有一个的编号,上表中	鞍份公钢三连作电业员技学后全钢有司总分检业气点、师斌获国股限炼厂厂三区专检部林,得技		

无 D 的指令为 16 位指令。

- (5) 执行形式 应用指令有脉冲执行型和连续执行型。脉冲执行型应用指令采用助记符后加 P 表示,助记符后无 P 的指令为连续执行型。
- (6) 操作数 应用指令的操作数分为源操作数 S、目的操作数 D 和辅助操作数 m、n。源操作数、目的操作数和辅助操作数多于 1 个时分别用 S1、S2...,D1、D2...以及 m1、m2,n1、n2...表示。

二、数据表示方法

 FX_{2N} 系列 PLC 中数据包括字元件/双字元件、位元件/位元件组件和变址寄存器。

1. 字元件/双字元件

(1) 字元件

字元件是 FX_{2N} 系列 PLC 数据类元件的基本结构。一个字元件是由 16 位的存储单元构成,其最高位(第 15 位)为符号位,第 $0\sim14$ 位为数值位。图 2 所示为 16 位数据寄存器 D0。

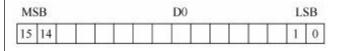


图 2 字元件

(2) 双字元件

可以使用两个字元件组成双字元件,可组成 32 位数据操作数。双字元件是由相邻的两个寄存器组成,如图 3 中由 D11 和 D10 组成。

MSB	DH		D10	LSB
31 30		17 16 15 14		1 0

图 3 双字元件

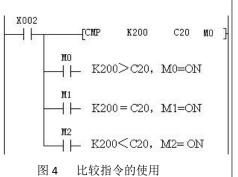
2. 位元件/位元件组件

只处理 ON/OFF 信息的软元件称为位元件,如 X,Y,M,S 等均为位元件。而处理数值的软元件称为字元件,如 T,C,D 等。组合方法的助记符如下:

Kn+最低位的位元件号

KnX、KnY、KnM 即是位元件组合,其中"K"表示后面跟的是十进制数,"n"表示 4 位一组的组数,16 位数据用 $K1\sim$ K4,32 位数据用 $K1\sim K8$ 。

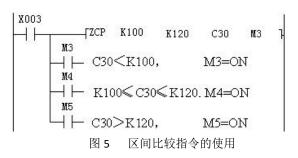
3. 变址寄存器 V、Z


 FX_{2N} 系列 PLC 有 $V0\sim V7$ 和 $Z0\sim Z7$ 共 16 个变址寄存器,都是 16 位的寄存器。变址寄存器 V/Z 实际上是一种特殊用途的数据寄存器,其作用相当于计算机中的变址寄存器,用于改变元件的编号(变址)。

三、传送、比较类指令及应用

1. 比较指令

	I	
术能手,		
全国劳	提出	 小组
动模范	,	,
等荣誉	问题	讨论
称号。		
林学斌		
刻苦学		
习,努力	引导	
钻研。他	学生	
长期扎	回答	
根生产		
一线,坚		
持开展		
科技攻		
关。他将		
计算机	讲述	听讲
系统中	板书	观察
上千条		记忆
机内日		10,17
文源代		
码全部		
转换成		
汉字码,		
实现了		
对 PLC		
的操作	4H 111	.t. A⊟
系统操	提出	小组
作界面	问题	讨论
的汉化;		
他将多		
年总结		
编写的	引导	
《电气	学生	
故障处	十二 十二	
理与查	回答	
找四种		
方法》、		
《PLC		
常见故		
障与处		


(1) 比较指令 CMP 比较指令 CMP 将源操作数 S1 和源操作数 S2 的数据进行比较,比较结果送到目标操作数 D中。如图4 所示,当 X002 为ON时,把常数 200与 C20的当前值进行

比较,比较的结果送入 $M0\sim M2$ 中。X002 为 OFF 时不执行, $M0\sim M2$ 的状态也保持不变。

(2) 区间比较指令 ZCP

区间比较指令 ZCP 执行时源操作数 S3 与 S1 和 S2 的内容进行比较,并比较结果送到目标操作数 D中。如图 5 所示,当 X000 为 ON 时,把 C30 当前值与 K100 和 K120 相比较,将结果送 M3、M4、M5 中。 X000 为 OFF,则 ZCP 不执行,M3、M4、M5 不变。

(3) 触点型比较指令

触点比较指令(FNC224~FNC246),共有 18条,是使用 LD、AND、OR 触点符号进行触点比较的指令。主要包括 LD 触点比较指令、AND 触点比较指令和 OR 触点比较指令。

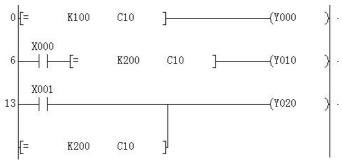


图 6 触点比较指令用法

2. 传送指令

理方法》 等教材 讲述 听讲 送给徒 观察 板书 弟,还建 立了大 记忆 连铸电 气实验 室,摸索 出了一 套适合 快速入 门的教 学方法 提出 小组 ---模 问题 讨论 拟实践 教学法, 使从实 验室里 走出的 技工成 引导 为技术 学生 骨干,为 回答 总厂的 发展储 备了雄 厚的后

备力量。

K100 会自动转换成二进制数。当 X001 为 OFF 时,则指令不执行,数据保持不变。

(2) 移位传送

移位传送指令的功能是将源数据(二进制)自动转换成 4 位 BCD 码,再进行移位传送,传送后的目标操作数元件的 BCD 码自动转换成二进制数;如图 8 所示。

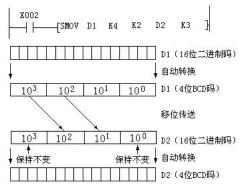
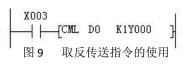



图 8 移位传送指令的使用

(3) 取反传送指令

取反传送指令将源操作数元件的数据逐位取反并传送到指定

目标。如图 9 所示,当 X003 为 ON 时,执行 CML 指令,将 D0 的低 4 位取 反向后传送到 Y003 ~

Y000中。

(4) 块传送指令和多点传送指令

块传送指令是将源操作数指定元件开始的 n 个数据组成数据 块传送到指定的目标。块传送指令用法如图 10 所示,传送顺 序既可从高元件号开始,也可从低元件号开始,传送顺序自 动决定。

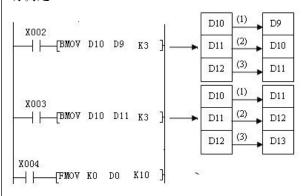


图 10 块传送和多点传送指令

(5)数据交换指令如图 11 所示,当 X005 为ON 时,将 D1 和 D2 中的数据相互交换。交换指令一般采用脉冲执行方式,否则在每一次扫描周期都要交换一次。

图 10 数据交换指令的使用

讲述 | 听讲

板书 观察

记忆

提出 小组

问题 讨论

引导 学生

回答

四、交替输出指令

ALT 指令一般都要使用其脉冲执行方式,否则每个扫描周期都要变换一次。如图 11 所示,当 X001 由 OFF 到 ON 时,Y002 的状态将改变一次。若用连续的 ALT 指令则每个扫描周期 Y002 均改变一次状态。

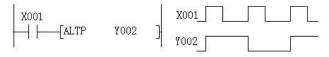
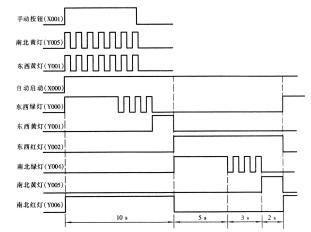



图 11 交替输出指令用法

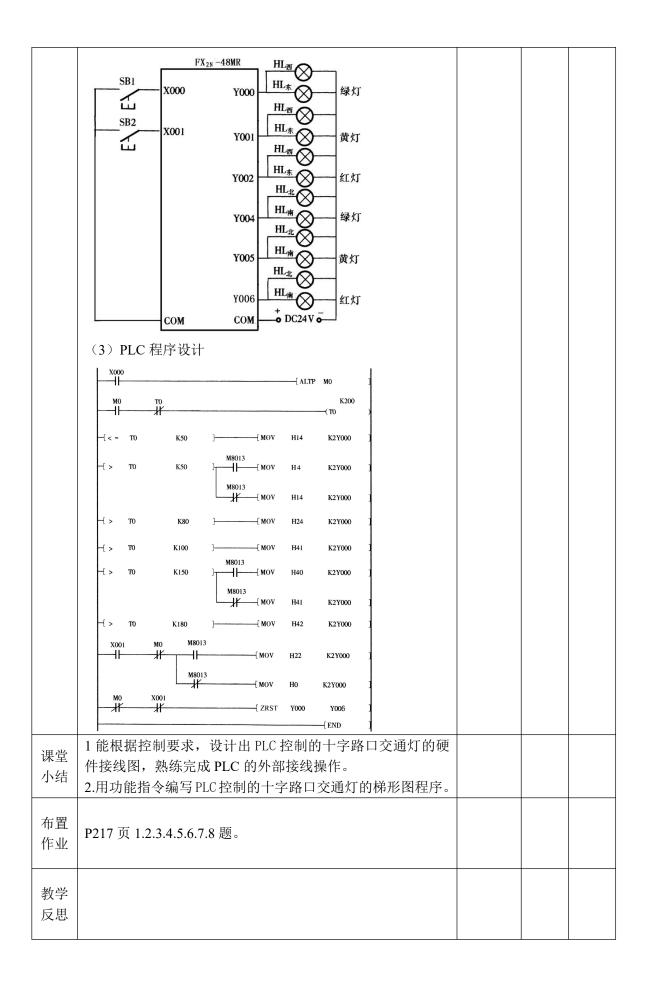
五、任务实施

用功能指令设计一个交通灯的控制系统,其控制要求: (1) 自动运行时,按一下启动按钮,信号系统按图 5.14 所示要求 开始自动工作(绿灯闪烁周期为 1s),按一下停止按钮,所 有信号灯都熄灭。(2)手动运行时,两个方向的黄灯同时闪 烁,周期为 1s。

(1) I/O 地址分配表

<i>t</i> 会)	启动/停止按钮 SB1	X000
输入端	手动开关 B2	X001
	东西向绿灯	Y000
	东西向黄灯	Y001
松山地	东西向红灯	Y002
输出端	南北向绿灯	Y004
	南北向黄灯	Y005
	南北向红灯	Y006

(2) 画 PLC 外部接线图


讲述 | 听讲

板书 观察

记忆

演示 操作

> 学生 动手 操作

任务	16	多工	多工作方式的小车行程的 PLC 控制			人	
课时	-			2	时	间	
班级	ζ				地.	点	
教学目标		知识目标	BCD 、E 2.掌握各 ⁵ 3.掌握 PI	用 CJ、CALL、 SRET 、IRET、I BIN 指令的一般方法。 种用途开关类电器在 PLC 输入搭 C 控制的小车行程 I/O 分配。 C 控制的小车行程程序编制,并 控。	2制中的(吏用方法	- - -
		技能目标	2.能根据 件接线图 3. 熟练操	运用 PLC 的功能指令编写 PLC 和控制系统输入信号和输出信号的,熟练完成 PLC 的外部接线操作 使作 GX-Developer V8 编程软件, 作,对 PLC 程序进行调试、运行	要求,设 乍。 完成程序		
		素质目标	2.培养学	生严格按照生产实践的标准进行 生团结、协作及良性竞争的精神 生自己获取信息的能力及自学能	0	23习惯	0
教学重	点	会编写多工作方:	式的小车行	行程的 PLC 控制程序。			
教学难	能根据控制系统输入信号和输出信号的要求,设计出多工作方式的小车行程的 PLC 控制的外部接线图,熟练完成 PLC 的外部接线操作。					l的 PLC	
教学方	法	讲授法、案例法	、演示法				
教学 考书		"十三五"职业	教育国家规	见划教材《电气控制与 PLC 应用	技术》吕	爱华编	著
		教学	文内容——	过程	思政 元素	教师 活动	学生 活动
导入新课		面学习 PLC 功能指 E行程的 PLC 控制		***************************************	持 "刘 志成"的 事迹	讲述	思考
讲授新课	课 1.条件跳转指令 条件跳转指令用于跳过顺序程序中的某一部分,以控制程序的流程。指针 P 用于指示分支和跳步程序,在梯形图中,指针放在左侧母线的左边。指令的使用方式如图 1 所示。 (S1) X004				爱业足岗业业业积最标或工积这工岗是本位、、恪守高准本作尽也匠敬立职乐勤敬尽以的完职尽。是精	讲述板书	听讲 观察 记忆

2. 子程序调用与返回指令

子程序调用与返回指令使用如图 2 所示,如果 X000 为 ON, 则转到标号P10处去执行子程序。当执行SRET指令时,返 回到 CALL 指令的下一步执行。

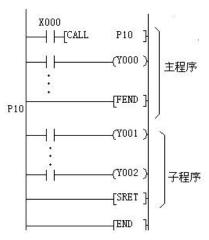


图 2 子程序调用与返回指令的使用

3. 中断指令

PLC 通常处于禁止中断状态,由 EI 和 DI 指令组成允许中断 范围。在执行到该区间,如有中断源产生中断,CPU将暂停

主程序执行转而执行 中断服务程序。当遇 到 IRET 时返回断点 继续执行主程序。如 图 2 所示,允许中断 范围中若中断源 X000 有一个下降沿,则转 入1000 为标号的中断 服务程序,但 X000 可 否引起中断还受 M8053 控制,当 X020 为 ON 时,则 M8053 控制 X000 无法中断。

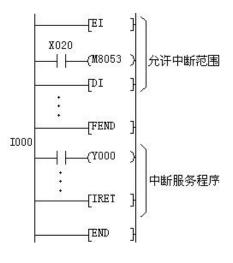
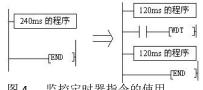


图 3 中断指令的使用


4. 主程序结束指令

主程序结束指令表示主程序的结束和子程序的开始,当程序执行到 FEND时, PLC 进行输入/输出处理,监视定时器刷新,完成后返回启 始步。

5. 监视定时器指令

监视定时器指令的功能是对 PLC 的监视定时器进行刷新。FX

系列 PLC 的监视定时器缺 省值为200ms(可用D8000 来设定),正常情况下PLC 扫描周期小于此定时时 间。

监控定时器指令的使用 图 4

时代的 重要体 现。刘志 成,东方 汽轮机 有限公 司维修 电工,高 级枝师, 荣 获 四 川東工 行业青 年岗位 技术能 手。刘志 成对光 栅尺和 西门子 伺服电 动机编 码器的 检测、维 修方面 的研究, 填补了 东汽公 司在这 部分技 术上的 空白,打 破了西 门子等 公司在 这些关 键性技 术上的 垄断,企 业创造 了数百 万元经 济效益。

小组 提出 问题 讨论

引导 学生

回答

神在新

听讲 讲述 板书 观察

记忆

小组 提出

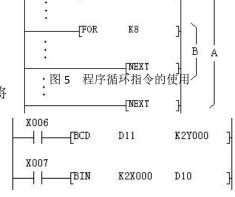
问题 讨论

> 引导 学生 回答

刘

志成的

6. 程序循环指令


在程序运行时,位于 FOR \sim NEXT 间的程序反复执行 n 次(由操作数决定)后再继续执行后续程序。循环的次数 n=1 \sim 32767。如果 N=-32767 \sim 0 之间,则当作 n=1 处理。如图 5

___FOR

所示为一个二重嵌套循环,外层执行 5 次。外层 A 每执行一次则内层 B 将执行 8 次。

7. 数据变换指令

BCD 码变换指令是将源元件中的二进制数转换成 BCD 码送到目标元件中,如图6所示。PLC中内部的运算为二进制运

K5

算,可用 BCD 指令将二进制数变换为 BCD 码输出到七段显示器。

BIN 变换指令是将源元件 图 6 数据变换指令的使用中的 BCD 数据转换成二进制数据送到目标元件中,如图 6 所示。

二、任务实施

控制要求: 小车按加料—右行—卸料—左行—原(左)位停止等步骤运行,并可选择手动方式和自动方式两种工作模式。在手动工作方式下,PLC可通过4只手动开关分别对加料电磁铁、右行接触器、卸料电磁铁、左行接触器进行控制。自动工作方式下,在小车处于左位时,按下启动按钮,小车即按加料8s—右行—卸料5s—左行—原(左)位停止的步骤以单周期方式自动运行。再次按下启动按钮,小车再运行一个周期。

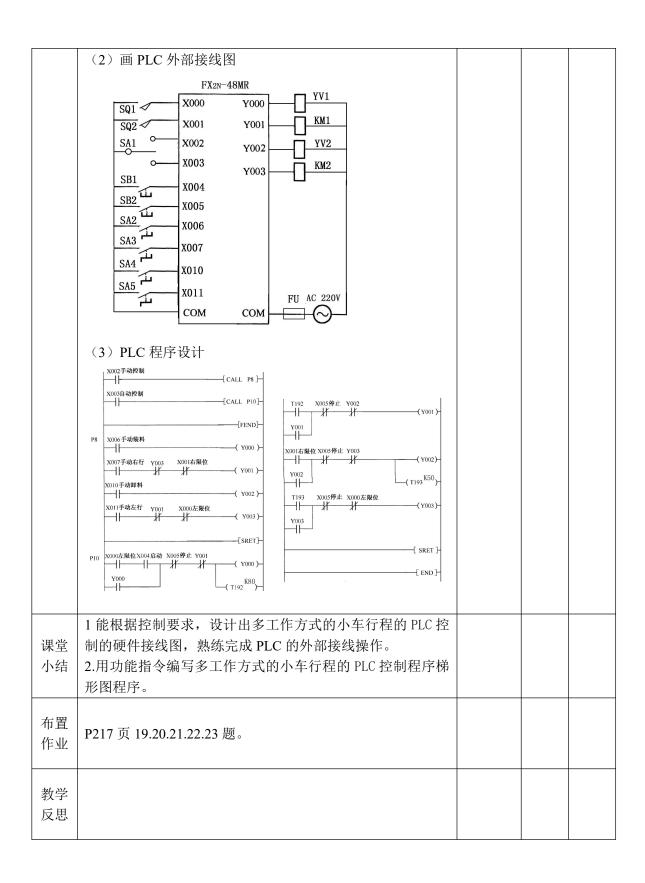
(1) I/O 地址分配表

	左限位开关 SQ1	X000
	右限位开关 SQ2	X001
	工作类型状态工艺 0.4.1	X002/手动、X003/自
	工作模式转换开关 SA1 	动
松)辿	启动按钮 SB1	X004
输入端	停止按钮 SB2	X005
	手动装料 SA2	X006
	手动右行 SA3	X007
	手动卸料 SA4	X010
	手动左行 SA5	X011
	装料电磁铁 YV1	Y000
输出端	右行接触器 KM1	Y001
	卸料电磁铁 YV2	Y002
	左行接触器 KM2	Y003

经历完 善诠释 了当代 青年工 匠的成 长历程 ——这 是一条 充满梦 想,充满 汗水,充 满耕新 与收获 的道路, 它注定 不易,也 终究不 凡。我们 相信未 来会有 更多的 年轻人 在各行 各业承 载工匠 精神不 断地前 行,去响 应新时 代伟大 "复兴 梦"的召

唤。

讲述


板书

听讲

观察

记忆

演示 学生 操作 动 手 操作

任务	17	LED 七段数码管的 PLC 控制			课人	
课时	ţ	2				
班纫			坦	b点		
教学目标		知识目标	1.学会使用 ADD 、SUB 、MUL 、DE WOR、WXOR、NEG、SEGD、SEGD 能指令的应用。 2.掌握 PLC 控制的 LED 七段数码管 I/O 3.学习 PLC 控制的 LED 七段数码管程载、运行、调试及监控。	P、 DEC O 分配。	O、EN	CO 等功
		技能目标	1 能熟练运用 PLC 的功能指令编写 PLC 2.能根据控制系统输入信号和输出信号 件接线图,熟练完成 PLC 的外部接线控 3. 熟练操作 GX-Developer V8 编程软件 监测等操作,对 PLC 程序进行调试、这	的要求,这 操作。 ; 完成程		
		素质目标	1.培养学生严格按照生产实践的标准进 2.培养学生团结、协作及良性竞争的精 3.培养学生自己获取信息的能力及自学	神。	学习习惯	贯。
教学重	点	会编写 LED 七段	数码管的 PLC 控制程序。			
教学邓		控制的外部接线	输入信号和输出信号的要求,设计出多工图,熟练完成 PLC 的外部接线操作。	作方式的	小车行	程的 PLC
教学方	法	讲授法、案例法	、演示法			
教学		"十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技术》	马爱华 绸	記著
考丰	<u> </u>	, — , , , , , , , , , , , , , , , ,				
		教学	内容——过程	思政 元素	教师 活动	学生活动
导入 新课		面学习 PLC 功能指 管的 PLC 控制程序	合的编程方法,今天学习 LED 七段数。。	讲授"王进"的事	近処	思考
讲授	一、	功能指令		巡线,对		
新课	1. 賃	算术运算指令		于一名		
	算フ	术运算指令是将两个	个源操作数 S1、S2 相加,减,乘和除,	线路专		
			D中。算术运算指令的使用如图 1 所示。	业的工		
		冷的执行过程:		人来说,	讲述	 听讲
			执行 (D1) + (D2) → (D4)。	是最基	'	191 191
			执行 (D0) -56 → (D1)	本的工作。但我	100	观察
)X002 为 ON 时 D1)×(D6)→(D9、	11 FADD D1 D2 D4 T	作,但背后却蕴		记忆
		DI / Ҳ (D6)→(D9、 只的低位字送到 D8	戸 却 温 藏 着 无		-,-	
		文的 R 医 7 医 3 D C 2 P S	太			
)X003 为 ON 时	道": 看			
		余法运算,(D7)/(D	似简单			
	商员	送到 (D20), 余数	机械的			
	(I	021)。	图 1 运算指令的使用	"沿线		

2. 加1指令和减1指令

加 1 指令和减 1 指令的功能是当条件满足则将指定元件的内容加 1 或减 1。用法如图 2 所示,当 X001 为 ON 时,D2+l; X002 为 ON 时,D2-l。

其中在 INC 运算时,如数据为 16位,则由+32767再加 1 变为-32768,但标志不置位;同样,32位运算由+2147483647再1就变为-2147483648时,标志也不

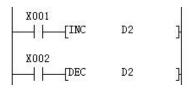


图 2 加 1 和减 1 指令的使用

置位;在 DEC 运算时,16 位运算-32768 减 1 变为+32767, 且标志不置位;32 位运算由-2147483648 减 1 变为-2147483647,标志也不置位。

3. 逻辑与、或、异或和求补指令

逻辑运算的功能是将指定的两个源组件 S1 和 S2 的数,进行二进制按位"与"、"或"和"异或"运算,然后将相"与"、"或"和"异或"的结果送入指定的目标组件 D中。求补指令是将 D 指定的元件内容的各位先取反再加 1,将其结果再存入原来的元件中。用法如图 3 所示。

图 3 逻辑运算指令的使用

4. 七段译码指令

七段译码指令使用如图 4 所示,当 X000 断开时,不执行 SEGD 指令的操作;当 X000 闭合时,每扫描一次就将 D0 中 16 位二进制数的低四位所表示的十六进制数译码成可以驱动与输出端 Y000~Y007 相连的七段数码管控制信号,其中 Y007 始终为 0。

图 4 七段译码指令使用

5. 译码指令和编码指令

DECO 指令的功能是根据 n 位输入的状态对 2ⁿ个输出进行译码。ENCO 指令功能是把给定的数据进行编码。使用方法如图 5 所示。

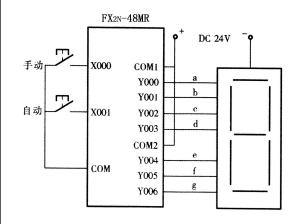
而行", 不仅要 小组 提出 全面了 解巡视 讨论 问题 区域内 的地形 情况,还 要熟练 引导 掌握线 路杆塔 学生 的巡视 回答 技巧,更 要具备 第一时 间发现 、 隐 患 缺 陷的"火 听讲 讲述 眼 金 睛"。二 板书 观察 十一年 记忆 间,从黄 河沿岸 到 沂 蒙 山区,从 鲁冀交 界到黄 海之滨, 一万多 公里的 小组 提出 特招高 压线路 问题 讨论 下,都留 下了王 进坚实 的脚印。 引导 世上难 事,莫如 学生 坚守。日 回答 复一日, 年复一

年,王进

精心守护着山

东电力

图 5 解码和编码指令用法

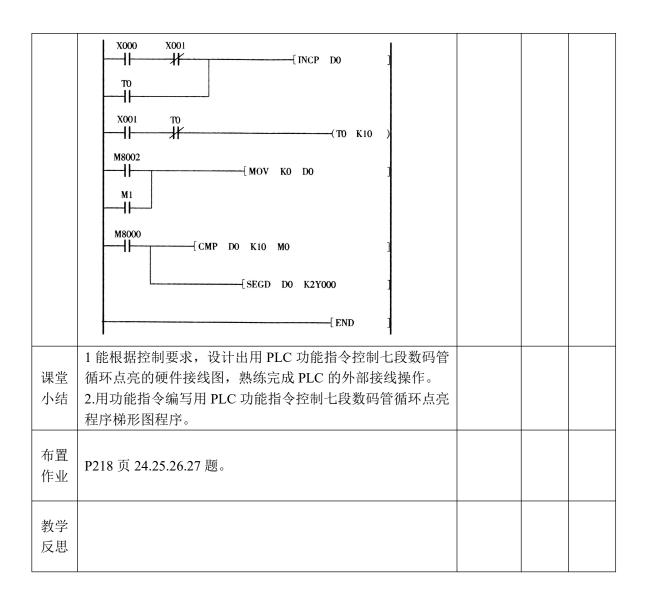

二、任务实施

设计一个用 PLC 功能指令控制七段数码管循环点亮。其控制要求如下: (1) 手动时,每按一次按钮七段数码管显示数值加1,由0~9 依次点亮,并实现循环。(2) 自动时,每隔 1s七段数码管显示数值加1,由0~9 依次点亮,并实现循环。

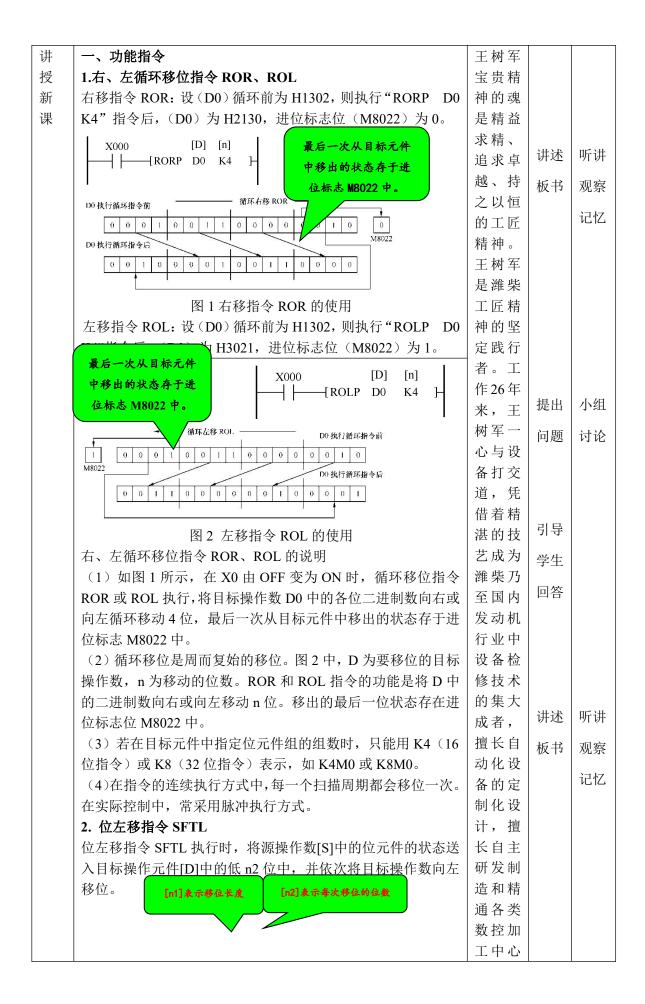
(1) I/O 地址分配表

输入端	手动按钮 SB1	X000
刊りくと何	自动按钮 SB2	X001
	七段数码管 a 段	Y000
	七段数码管 b 段	Y001
	七段数码管 c 段	Y002
输出端	七段数码管 d 段	Y003
	七段数码管 e 段	Y004
	七段数码管f段	Y005
	七段数码管g段	Y006

(2) 画 PLC 外部接线图


(3) PLC 程序设计

安全稳 定运行, 用对事 业的赤 诚之心 守望着 万家灯 火明。 在平凡 中坚守, 在实战 中锤炼, 王进用 " 敢 于 有梦、善 于追梦、 勤于圆 梦"的不 懈奋斗, 浇灌出 实现美 好"中国 梦"征程 上的青 春之花; 用"敬业 乐业、专 业专注、 精益求 精"的工 匠精神, 唱响了 " 劳 动 最光荣、 劳动最 崇高、劳 动最伟 大、劳动 最美丽" 的新时


代 劳 动者之歌。

主网的

演示 学生 操作 动 手 操作

任务	18		授课	人			
课日	付		时	间			
班约	及		点				
		知识目标	1.学会使用 ROR 、ROL、SFTR、SFTL 能指令的应用。 2.掌握 PLC 控制的工业机械手 I/O 分配 3.学习 PLC 控制的工业机械手程序编制 运行、调试及监控。	和电磁阀	的工作	过程。	
教学目	目标	技能目标	1 能熟练运用 PLC 的功能指令编写 PLC 程序。 2.能根据控制系统输入信号和输出信号的要求,设计出 PLC 的能目标 硬件接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件,完成程序的编程、下载、监测等操作,对 PLC 程序进行调试、运行。				
		素质目标	1.培养学生严格按照生产实践的标准进程 2.培养学生团结、协作及良性竞争的精理 3.培养学生自己获取信息的能力及自学问题。	申。	学习习	惯。	
教学真	重点	会编写工业机械手	的 PLC 控制程序。				
教学双	惟点		入信号和输出信号的要求,设计出工业成 PLC 的外部接线操作。	机械手的	PLC 控	制的外	
教学プ	方法	讲授法、案例法、	演示法				
教学 考	_	"十三五"职业教育国家规划教材《电气控制与 PLC 应用技术》吕爱华编著					
	教学内容——过程			思政 教师 学生 元素 活动 活动			
导入新课	前面学习 PLC 功能指令的编程方法,今天学习工业机械手的 PLC 控制程序。				讲述	思考	

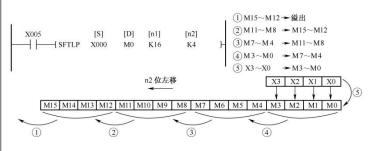


图 3 位左移指令 SFTL 的使用

位左移指令 SFTL 的说明:

- (1) S 为移位的源操作数的最低位, D 为被移位的目标操作数的最低位。n1 为目标操作数个数, n2 为源操作数个数。
- (2) 位左移就是源操作数从目标操作数的低位移入 n2 位,目标操作数各位向高位方向移 n2 位,目标操作数中的高 n2 位溢出。源操作数各位状态不变。
- (3)在指令的连续执行方式中,每一个扫描周期都会移位一次。在实际控制中,常采用脉冲执行方式。

3. 位右移指令 SFTR

位右移指令 SFTR 执行时,将源操作数[S]中的位元件的状态送入目标操作元件[D]中的低 n2 位中,并依次将目标操作数向右移位。

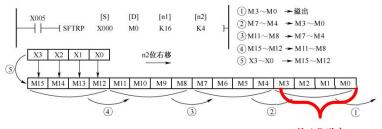


图 4 位右移指令 SFTR 的使用 低 4 位 溢 B

位右移指令 SFTR 的说明:

- (1) S 为移位的源操作数的最低位, D 为被移位的目标操作数的最低位。n1 为目标操作数个数, n2 为源操作数个数。
- (2) 位右移就是源操作数从目标操作数的高位移入 n2 位,目标操作数各位向低位方向移 n2 位,目标操作数中的低 n2 位溢出。源操作数各位状态不变。
- (3)在指令的连续执行方式中,每一个扫描周期都会移位一次。 在实际控制中,常采用脉冲执行方式。

4. 字右移和字左移指令

字元件右移和字元件左移指令以字为单位,其工作的过程与位移位相似,是将 n1 个字右移或左移 n2 个字,指令的使用方法和操作过程示意图如图 5 所示。

和精密 提出 小组 机床的 讨论 问题 维修, 他成为 潍柴高 精尖设 备维修 引导 保养的 学生 探路人 和领军 回答 人。 匠 心 聚,百 工兴。 王树军 "大国 工匠年 度 人 物"颁 奖词这 写 样 道:他 是维修 讲述 听讲 工,也 是设计 板书 观察 师,更 记忆 像是永 不屈服 的 斗 士! 临 危 请 命,只 为国之 重器不 受制于 人。王 树军, 中国工 匠的风 骨。在 尽头处 超越, 在平凡

中

非

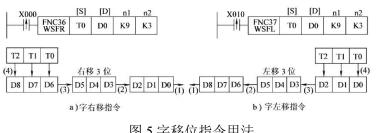


图 5 字移位指令用法

5. 带进位的循环移位指令

二、任务实施

控制要求: 机械手的外形图及运动示意图如图 6 所示。左上方 为原点(初始位置),工作过程按照原点→下降→夹紧工件→上 升→右移→下降→松开工件→左移→回原点完成一个工作循 环,实现把工件从 A 处移送到 B 处。机械手上升、下降、左右 移动时用双线圈二位电磁阀推动气缸完成。

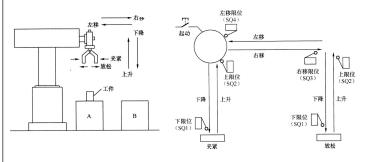


图 6 机械手的外形图及运动示意图

(1) I/O 地址分配表

输入端	起动按钮 SB1	X000
	行程开关 SQ1	X001
	行程开关 SQ2	X002
	行程开关 SQ3	X003
	行程开关 SQ4	X004

凡。作 为潍柴 工匠人 才的一 面旗 帜, 凭 借精益 求精、 持之以 恒、爱 岗敬 业、不 断创新 的工匠 精神, 为广大 职工树 立了一 个正直 进取、 勤学实 干、技 能突 出。

讲述

板书

听讲

观察

记忆

演示 操作

学生 动手

操作

	停止按钮 SB2	X005	
	下降电磁阀 YV1	Y000	
	夹紧电磁阀 YV2	Y001	
松山地	上升电磁阀 YV3	Y002	
输出端	右移电磁阀 YV4	Y003	
	左移电磁阀 YV5	Y004	
	原位指示灯 HL	Y005	
SB1 111 SQ1 ✓ SQ2 ✓ SQ3 ✓ SQ4 ✓ SB5 111	X000 Y000	YV1 YV2 YV3 YV4 YV5 HL C 220V	
B) PLC 程序	设计		

		ı	, ,	
	X002 X004 M101 M102 M103 M104 M105 M106 M107 M108 M109			
	[END]			
课堂小结	1 能根据控制要求,设计出用工业机械手的 PLC 控制的硬件接线图,熟练完成 PLC 的外部接线操作。 2.用功能指令编写用工业机械手的 PLC 控制程序梯形图程序。			
布置作业	P218 页 28.29.30 题。			
教学反思				

课时	†			时i	间		
班级	· · · · · · · · · · · · · · · · · · ·				地	点	
			1. 了解 PLC 控制应用系统的规划内容-	 与设记	十任务		
		知识目标	和步骤。				
			C 控制应用系统。				
			1 能熟练运用 PLC 的指令编写 PLC 程序	茅 。			
			的要	求,设	计出 P	LC 的硬	
教学目	目标	技能目标	件接线图,熟练完成 PLC 的外部接线热	操作。	操作 。		
			3. 熟练操作 GX-Developer V8 编程软件	上,完月	战程序	的编程	足、下载、
			监测等操作,对 PLC 程序进行调试、运	运行。			
			1.培养学生严格按照生产实践的标准进	行学.	习的学	习习惯	! .
		素质目标	2.培养学生团结、协作及良性竞争的精				
			3.培养学生自己获取信息的能力及自学	能力。			
教学重	点	会编写电梯的 PL					
教学难	主点		输入信号和输出信号的要求,设计出电	梯的I	PLC 控	制的夕	部接线
			C 的外部接线操作。				
教学方		讲授法、案例法	、演示法				
教学	_	 "十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技ス	忙》吕	爱华编	諸著
考丰	5						1
		教学	:内容——过程		、政	教师	学生
					素	活动	活动
导入			f令的编程方法,今天学习电梯的 PLC	讲授	"高 ^k "的	讲述	思考
新课	控制 	削程序 。	子。				
7十14年		DI C 检州石矿	₩₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	ļ .	迹		
讲授 新课	一、 1	1	的规划与设计 十的基本原则与内容		主一 要有		
胡床		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	」的基本原则与内谷 实现被控对象的工艺要求,以提高生产		安月 え,更		
			要先级还外家的工乙安尔,以近同王/ 遵循以下基本原则:		, 有毅		
			· 被控对象的控制要求		有恒		
)保证 PLC 控制系			只有	讲述	听讲
			F、使用及维修方便		寺不	板书	观察
)适应发展的需要		•	持之	拟节	/ / / / / / / / / / / / / / / / / / /
	2.	PLC 系统设计的过	b骤	以恒	1,才		记忆
	(1) 系统规划, 即根	据工艺流程分析控制要求,明确控制任	能	垁 得		
务,拟定控制系统设计的技术			计的技术条件。	成功	h .		
	(2)确定所需的用户输入设备(按钮、操作开关、限位开关			个句	契 而		
	传感器等)、输出设备(继电器、接触器、信号灯等执行元位			不會	舍 的		
			的控制对象(电动机、电磁阀等); 估算	'	必将		
			所控制对象与 PLC 之间的信号关系,信		工作		
			求的复杂程度,控制精度估算 PLC 的用		重业,		
户存储器容量。					之奋	提出	小组
	(3)选择 PLC。		斗约	※生;	ЖШ	7,扫

- (4) 分配、定义 PLC 的 I/O 点, 绘制 I/O 连接图。
- (5) PLC 控制程序设计。包括设计梯形图、编写语句表、 绘制控制系统流程图。
- (6) 控制柜(台)设计和现场施工。
- (7) 试运行、验收、交付使用,并编制控制系统的技术文件。

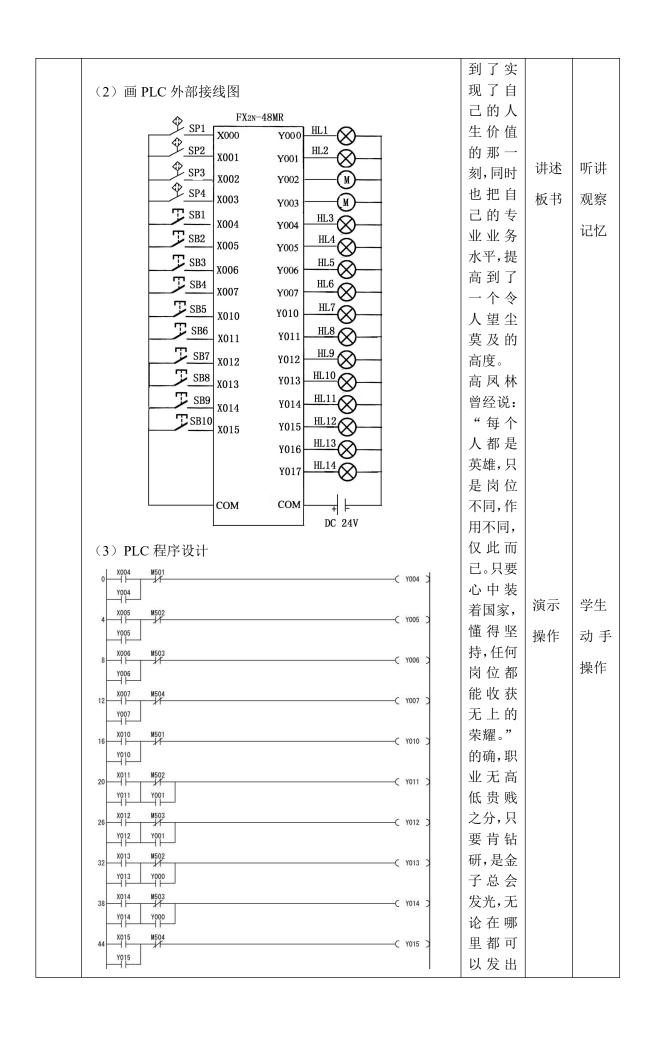
二、PLC 选型与硬件系统设计

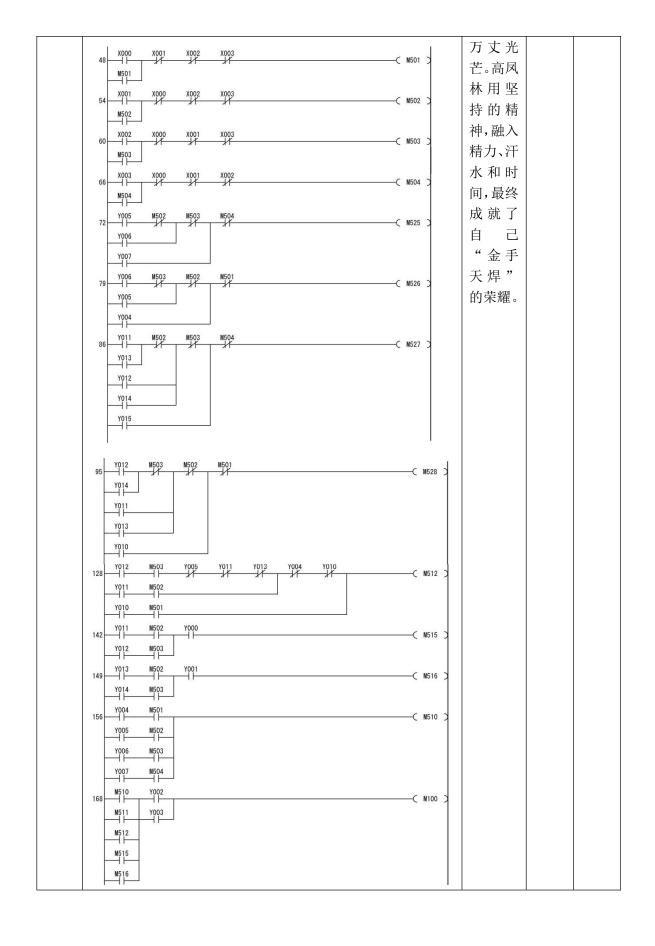
- 1. PLC 的选型
- 2. PLC 的硬件电路设计

三、PLC 软件设计与程序调试

- 1. PLC 软件设计
- 2. 程序模拟调试

二、任务实施

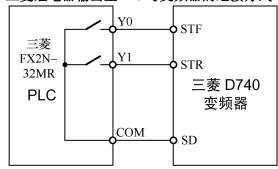

- (1)开始时,电梯处于任意一层。当有高层某一信号呼叫时, 轿厢响应该呼梯信号,上升到呼叫层停止;
- (2) 电梯停于某层, 当有高层多个信号同时呼叫时, 电梯先 院 的 一上升到低的呼叫层, 停 3 秒后继续上升到高的呼叫层; 名焊工,
- (3)开始时,电梯处于任意一层。当有低层某一信号呼叫时, 轿厢响应该呼梯信号,下降到呼叫层停止;
- (4) 电梯停于某层,当有低层多个信号同时呼叫时,电梯先下降到高的呼叫层,停3秒后继续下降到低的呼叫层;
- (5) 电梯运行到达某楼层时,轿厢停止运行,轿厢门自动打开,延时 3 秒后自动关门;
- (6) 在电梯运行过程中,轿厢上升(或下降)途中,任何反 的 焊 接方向下降(或上升)的呼梯信号均不响应;如果某反向呼梯 工作,是信号前方再无其它呼梯信号,则电梯响应该呼梯信号。 一 项 耗


(1) I/O 地址分配表

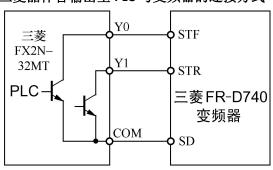
输入端		输出端		
一楼位置传感器 SP1	X000	上行指示 HL1	Y000	
二楼位置传感器 SP2	X001	下行指示 HL2	Y001	
三楼位置传感器 SP3	X002	上行驱动电动机 M	Y002	
四楼位置传感器 SP4	X003	下行驱动电动机 M	Y003	
一楼指令按钮 SB1	X004	一楼指令登记 HL3	Y004	
二楼指令按钮 SB2	X005	二楼指令登记 HL4	Y005	
三楼指令按钮 SB3	X006	三楼指令登记 HL5	Y006	
四楼指令按钮 SB4	X007	四楼指令登记 HL6	Y007	
一楼上行按钮 SB5	X010	一楼上行呼梯登记 HL7	Y010	
二楼上行按钮 SB6	X011	二楼上行呼梯登记 HL8	Y011	
三楼上行按钮 SB7	X012	三楼上行呼梯登记 HL9	Y012	
二楼下行按钮 SB8	X013	二楼下行呼梯登记 HL10	Y013	
三楼下行按钮 SB9	X014	三楼下行呼梯登记 HL11	Y014	
四楼下行按钮 SB10	X015	四楼下行呼梯登记 HL12	Y015	
		开门模拟 HL13	Y016	
		关门模拟 HL14	Y017	

视责任 问题 讨论 为使命, 为之敬 业奉献; 视技艺 引导 为财富, 为之刻 学生 苦专研。 回答 高凤林, 是中国 航天科 技集团 公司第 一研究 讲述 听讲 名焊工, 板书 观察 也是一 记忆 个 默 默 一无 闻 的 幕后工 作者。他 所承担 工作,是 一项耗 费体力 小组 提出 和精力 的苦差 问题 讨论 事,更是 多数人 眼中的 " 低 等 引导 职业"。 可高凤 学生 林就是 回答 在这样 一个被 人低看

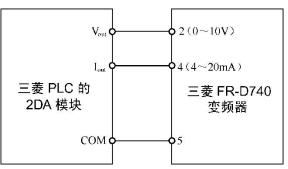
的 开一 一 是 年 , 并 是 年 , 坚 持



	177 M100 [PLS M110]
	180 M110 TO Y017 (Y016)
	185 Y016
	189 Y016 T1 (M200)
	193 Y000 M200 Y016 (Y017)
	Y017
	199 Y017 (T1 K30) M525 Y001 (Y000)
	M527 M526 Y000 207 (Y001)
	207 M528 (Y001)
课堂	1 能根据控制要求,设计出电梯的 PLC 控制的硬件接线图, 熟练完成 PLC 的外部接线操作。
小结	2.用功能指令编写电梯的 PLC 控制梯形图程序。
布置	P218 页 1.2.3.4.5.6.7.8.9 题。
作业	7210) (71210 1101 1101 1101 1101 1101 1101 110
教学	
反思	


任务 20	离心机的 PLC	: 授资	果人				
课时		2	时	间			
班级			地	点			
	知识目标	(1) 能够根据离心机多段速控制要求 点数。 (2) 能够正确编写离心机多段速的 PL (3) 学会离心机多段速的 PLC 控制系 行。	.C 控制系统	充梯形图	程序。		
教学目标	技能目标	1 能熟练运用 PLC 的指令编写 PLC 程序。 2.能根据控制系统输入信号和输出信号的要求,设计出 PLC 件接线图,熟练完成 PLC 的外部接线操作。 3. 熟练操作 GX-Developer V8 编程软件,完成程序的编程、 监测等操作,对 PLC 程序进行调试、运行。					
	素质目标	2.培养学生团结、协作及良性竞争的精	1.培养学生严格按照生产实践的标准进行学习的学习习惯。 2.培养学生团结、协作及良性竞争的精神。 3.培养学生自己获取信息的能力及自学能力。				
教学重点		PLC 多段速控制程序。					
教学难点		输入信号和输出信号的要求,设计出离内 练完成 PLC 的外部接线操作。	心机的 PLC	多段速	控制的		
教学方法	讲授法、案例法	、演示法					
教学参 考书	"十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技术》吕	景华编	著		
	教学	之内容——过程	思政 元素	教师 活动	学生 活动		
1	面学习电梯的 PLC 速控制程序。	的编程方法,今天学习离心机的 PLC 多	讲授"艾 爱国"的 事迹	讲述	思考		
新课	一个 PLC 变频搭器本体、变频器与结构中最重要的就	前有 FR-700 系列和 FR-800 系列两大列变频器在市场使用较多,它又分为A700、FR-D700、FR-E700、FR-F700 FR-L700 5 个系列,其外形如图 1 所示。 FR -	艾秉事做致人到的他工奉多次我大焊爱持情到做要最信在岗献年参国项接国做要极工做",焊位50多与重目技	讲述 板书	听讲 观察 记忆		

1.三菱继电器输出型 PLC 与变频器的连接方式


三菱继电器输出型 PLC 与变频器的开关量接线方式

2.三菱晶体管输出型 PLC 与变频器的连接方式

三菱晶体管输出型 PLC 与变频器的开关量接线方式

3.三菱 PLC 的模拟量模块与变频器的连接方式

三菱模拟量模块与变频器的连接方式

二、任务实施

某化工厂的工业离心机如图 2 所示。按下启动按钮,电动机以 15Hz 运行,200s 后以 20Hz 运行,以后每隔 200s,增加 5Hz,直到运行 45Hz,其运行速度如图 3 所示。按下停止按钮,电动机停止运行。

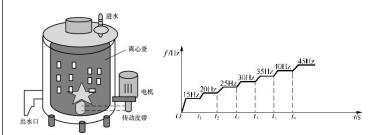
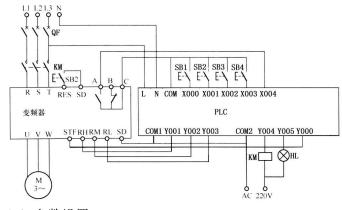


图 2 工业离心机的结构示意图


图 3 工业离心机运行速度图

术攻关, 攻克数 小组 提出 百个焊 接技术 问题 讨论 难关。作 为我国 焊接领 域"领军 引导 人",他 倾心传 学生 艺,在全 回答 国培养 焊接技 术人才 600 多 名。 50 听讲 讲述 多年来, 艾爱国 板书 观察 以"拼命 记忆 三郎"的 劲头引 领着我 国焊接 事业不 断发展。 " 我 对 自己的 技术要 小组 提出 求是达 到极致。 问题 讨论 只有做 到极致, 才能发 挥党员 引导 的先锋 模范作 学生 用。"他 回答 说。

(1) I/O 地址分配表

输入端	输出端		
变频器上电按钮 SB1	X000	启动 STF	Y000
变频器失电按钮 SB2	X001	高速选择 RH	Y001
启动按钮 SB3	X002	中速选择 RM	Y002
停止按钮 SB4	X003	低速选择 RL	Y003
故障信号A、C	X004	接通 KM	Y004
		报警指示 HL	Y005

(2) 画 PLC 外部接线图

(3)参数设置

要想让变频器实现多段速功能,必须给变频器设置如下参数。

P79=3 (组合操作模式)。

P1=50Hz (上限频率)。

P2=0 Hz (下限频率)。

P7=2s (加速时间)。

P8=2s (减速时间)。

P160=0 (扩展功能显示)。

P179=62 (将 STR 端子的功能变更为变频器复位 RES 功能)。

各段速度: P4= 15Hz, P5=20Hz, P6=30Hz, P24=40Hz, P25=35Hz, P26=25Hz, P27= 45Hz。

(3) PLC 程序设计

变频器端子的不同组合与 PLC 传送数据之间的关系

传送数	端子 RL	端子 RM	端子 RH	对应频率
据	(Y003)	(Y002)	(Y001)	/Hz
1	0	0	1	15
2	0	1	0	20
3	0	1	1	40
4	1	0	0	30
5	1	0	1	35
6	1	1	0	25
7	1	1	1	45

讲述 | 听讲

板书 观察

记忆

 演示
 学生

 操作
 动 手

操作

	X000
课堂	1 能根据控制要求,设计出离心机的 PLC 多段速控制的硬件接线图,熟练完成 PLC 的外部接线操作。 2.用功能指令编写离心机的 PLC 多段速控制梯形图程序。
布置作业	P218 页 11.12.13.14 题。
教学反思	

任务 21	电热水炉温度的 PLC 控制	授课	人			
课时	4	时间	间			
班级		地。	点			
	1.学会使用 FROM、TO 特殊功能指令。 2.掌握 PLC 控制的电热水炉温度 I/O 分 3.学习 PLC 控制电热水炉温度的程序编 运行、调试及监控。		E确完成	花下载、		
教学目标	技能目标 等特殊功能模块的使用和编程。 2.熟练操作 GX-Developer V8 编程软件,	1.掌握模拟量输入模块 FX2N-2AD、模拟量输出模块 FX2N-2DA				
	素质目标 2.培养学生团结、协作及良性竞争的精	1.培养学生严格按照生产实践的标准进行学习的学习习惯。 2.培养学生团结、协作及良性竞争的精神。 3.培养学生自己获取信息的能力及自学能力。				
教学重点	会编写电热水炉温度的 PLC 控制程序。					
教学难点	能根据控制系统输入信号和输出信号的要求,设计出电热控制的外部接线图,熟练完成 PLC 的外部接线操作。	热水炉温度	的 PLC	多段速		
教学方法	讲授法、案例法、演示法					
教学参 考书	"十三五"职业教育国家规划教材《电气控制与 PLC 应原	用技术》吕	爱华编	著		
	教学内容——过程	思政 元素	教师 活动	学生 活动		
1	面学习离心机的 PLC 多段速控制的编程方法,今天学习电水炉温度的 PLC 控制程序。	讲授"洪 家光"的 事迹	讲述	思考		
新课模可模可	 模拟量模块 模拟量输入(A/D)模块:将现场仪表输出的(标准) 拟量信号 4~20mA、0~5V、0~10VDC等转化为PLC以处理的一定位数的数字信号。 温度传感器 0~5V、10V 模拟量输入模块 FROM PLC以处理的一定位数的数字信号。 (a) 模拟量输入模块 FROM PLC 医力传感器 0~5V、10V 模拟量输入模块 FROM PLC (a) 模拟量输入模块 FROM (b) 模拟量输入模块 (b) 模拟量输入 图 1 模拟量输入/输出示意图以量输出(D/A)模块:将PLC处理后的数字信号转化为场仪表可以接收的标准信号 4~20mA、0~5V、0~WDC等。如:12 位数字量(0-4000)→ 4-20mA 	洪是航明车是车控双级他的石精削技取家中发数工普工车料技研金滚密工术光国黎控他通数工高,制刚轮磨具摘了	讲述 书	听讲 观察 记忆		

2000 对应的转换结果: 12mA 二、模拟量输入模块 FX2N-2AD 1. 简介 (1) FX2N-2AD 模块用于将 2 点模拟输入(电压输入或电流

- (1) FX2N-2AD 模块用于将 2 点模拟输入(电压输入或电流输入)转换成 12 位的数字量,并通过 FROM 指令读入 PLC中。
- (2)提供 12 位高精度分辨率 (2¹²= 4096)。数字输出范围
- 0~4096, 一般调到 0 ~ 4000;
- (3) 2 通道电压输入(0 \sim 10V 或 0 \sim 5V) 或电流输入(4 \sim 20mA)。
- (4) 由 PLC 的基本单元提供内部电源, 不单独使用电源。

2.模块连接

如图 2 所示,模拟输入通过双绞屏蔽电缆来接收。当电压输入时,将信号接在 VIN 和 COM 端;当电流输入时,信号接在 IIN 和 COM 端,同时将 VIN 和 IIN 之间进行短路处理,如图 2 所示。

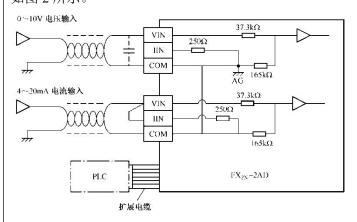


图 2 FX_{2N}-2AD 模块接线图

3.缓冲存储器分配

特殊功能模块内部均有数据缓冲存储器 BFM,它是 FX_{2N} -2AD 同 PLC 基本单元进行数据通信的区域,这一缓冲区由 32 个 16 位的寄存器组成,编号为 BFM#0~BFM#31。

4.增益和偏置

电压输入:模拟值 0~10V,数字值 0~4000 电流输入:模拟值 4~20mA,数字值 0~4000

三、模拟量输出模块 FX2N-2DA

1. 简介

- (1) FX2N-2DA 模拟量输出模块用于将 12 位的数字量转换成 2 路模拟量信号输出(电压输出或电流输出)。并通过 TO 指令写入 PLC 中。
- (2)提供12位高精度分辨率(212=4096)。数字输出范围0~

步二等 奖。 无数个 高光时 引导 刻的背 学生 后是巧 到极致 回答 的技艺, 是毫厘 之间的 精密磨 削,是让 加工航 讲述 空发动 板书 机叶片 的工具 再精确 一微米, 是到一 根头发 丝二十 五分之 一的精 心雕琢。 20 多年 提出 来,他精 问题 益求精、 努力钻 研,通过 技术革 新为企 引导 业贡献 学生. 力量。 回答

2017 年

度国家

科技进

提出

问题

小组

讨论

听讲

观察

记忆

小组

讨论

4096, 一般调到 0 ~ 4000;

- (3) 2通道电压输出 (0 \sim 10V 或 0 \sim 5V) 或电流输出 (4 \sim 20mA)。
- (4) 对每一通道,可以规定电压或电流输出。
- (5)由 PLC 的基本单元提供内部电源,不单独使用电源。

2.模块连接

如图 3 所示,在使用电压输出时,将负载的一端接在 VOUT端,另一端接在 COM端;在使用电流输出时,将负载的一端接在 IOUT端;另一端接在 COM端;并在 IOUT 和 VOUT之间进行短路,当电压输出存在波动或有大量噪声时,在VOUT和 COM之间连接 0.1~0.47μF/DC 25V 的电容。电流负载接在 IOUT和 COM之间。

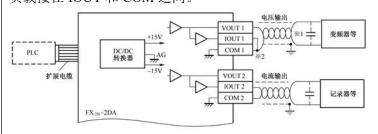
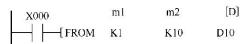


图 3 FX_{2N}-2DA 模块接线图

3.缓冲存储器的分配

BFM#16: 存入由 BFM#17(数字值)指定通道的 D/A 转换数据, D/A 数据以二进制形式存在, 并以低 8 位和高 4 位两部分按顺序进行存放和转换。

BFM#17: b0——通过 $1\rightarrow 0$,通道 2 的 D/A 转换开始; b1——通过 $1\rightarrow 0$,通道 1 的 D/A 转换开始; b2——通过 $1\rightarrow 0$,D/A 转换的低 8 位数据保持。


4. 增益和偏置

增益可以设置为任意值,为了充分利用 12 位数字值,建议输入的数字范围为 0~4000。例如,当电流输出为 4~20mA 时,调节 20mA 模拟输出量对应的数字值为 4000。当电压输出时,其偏置值为 0;当电流输出时,4mA 模拟量对应的数字输入值为 0。

四、缓冲存储器 BFM 的读写操作指令 FROM 和 TO

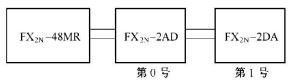
1. FROM 指令

FROM 指令(FNC78)的功能是实现对特殊模块缓冲区 BFM 指定位的读取操作。

X0: FROM 指令执行的起动条件。起动指令可以是 X、Y、内部继电器 M 等。

m1: 特殊功能模块号 (范围 $0\sim7$)。特殊功能模块通过扁平 电缆连接在 PLC 右边的扩展总线上,可以连接最多 8 块特殊

讲述 听讲


板书 观察

记忆

讲述听讲板书观察

记忆

功能模块,它们的编号从最靠近基本单元的那一个开始顺次 编为0~7号。

m2: 特殊功能模块缓冲存储器 (BFM) 首元件编号 (范围 0~ 31)。

[D]: 指定存放数据的首元件号。

n: 传送点数,用 n 指定传送的字点数(n=1~32)。

2. TO 指令

TO 指令(FNC79)的功能是由 PLC 向特殊单元缓冲存储器 BFM 写入数据的指令。

当 X0=ON 时,将 PLC 中以 D10 开始的两个数据写入 0 号特 殊功能模块内以 10 号缓冲存储器 (BFM#10) 开始的两个缓 冲存储器中。

TO 指令的说明:

X0: TO 指令执行的起动条件。起动指令可以是 X、Y、内部 继电器M等。

m1:特殊功能模块号(范围0~7)。

m2:特殊功能模块缓冲寄存器首地址(范围 0~31)。

[S·]: 指定被读出数据的元件首地址。

n: 传送点数,用n(范围1~32)指定传送的字点数。

五、任务实施

电热水炉温度控制 如图 4 所示, 要求当 水位低于低位液位 开关时,打开进水电 磁阀进水; 当水位高 于高位液位开关时, AC 220V 关闭进水电磁阀停

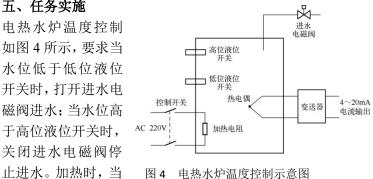
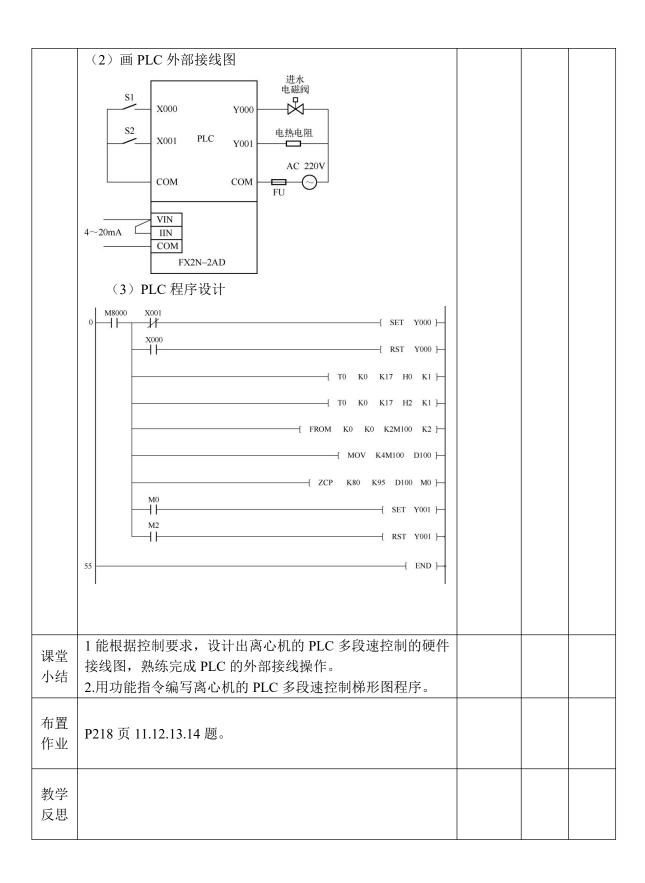


图 4 电热水炉温度控制示意图


水温低于80℃时, 打开电源控制开关开始加热: 当水温高于95℃时,停止加热 并保温。

(1) I/O 地址分配表

	• •	
输入端	高位液位开关 S1	X000
相り入り間	低位液位开关 S2	X001
输出端	进水电磁阀	Y000
和 凸 垧	加热电阻	Y001

演示 学生 动手 操作

操作

任务2	22	-	送风和循环系统的通信控制		授课人			
课时	<u> </u>		2					
班级	ά		地点					
		知识目标	1.熟悉通信的基础知识。 2.掌握N:N网络通信和并行连接网络通程序的编写。 3.学习两台 PLC 之间的通信的程序编制行、调试及监控。					
教学目	标	技能目标	11、响风及血压。 11、响风及血压。 11. 能够应用 FX _{2N} -485-BD 通信模块对 N:N 通信以及并行通价统进行简单设计,并进行基本编程。 2.熟练操作 GX-Developer V8 编程软件,完成程序的编程、下监测等操作,对 PLC 程序进行调试、运行。					
		素质目标	2.培养学生团结、协作及良性竞争的精	1.培养学生严格按照生产实践的标准进行学习的学习习惯。 2.培养学生团结、协作及良性竞争的精神。 3.培养学生自己获取信息的能力及自学能力。				
教学重	点	会编写送风和循:	环系统的通信控制程序。					
教学难	点		输入信号和输出信号的要求,设计出送。 熟练完成 PLC 的外部接线操作。	风和循	环系统的:	通信控制		
教学方	法	讲授法、案例法	、演示法					
教学参 考书		"十三五"职业	教育国家规划教材《电气控制与 PLC 应	用技术	》吕爱华统	編著		
		教学	内容——过程	思可元素				
导入新课		面学习电热水炉温 如循环系统的通信:	度的 PLC 控制的编程方法, 今天学习送控制程序。	讲授" 树军" 事题	"的	思考		
送到另一台机器。数据通信系统一般由传递通信软件等组成。 1. 数据通信方式按同时传送的位数来分,信。 (1)并行通信。并行通信位同时发送或接收。 (2)串行通信。串行通信地顺序发送或接收。 2. 数据传送方式在通信线路上点对点的通			念信息通过适当的传送线路从一台机器传传送设备、传送控制设备和传送协议及传送控制设备和传送协议及分,可以将通信分为并行通信和串行通通信是指所传送的数据以字节或字为单通信是以二进制的位为单位,一位一位的通信,按照数据传送方向与时间的关方式划分为单工、半双工、全双工通信	王在的上于的件出实动了价释匠神用树普岗把自"期事"队定人值了"。独	通位属己一做用行义生诠工精他讲 板			

- (1) 单工通信。单工通信是指信息的传送始终保持同一个方 向,而不能进行反向传送,如图 1 (a) 所示。其中,A 端只 能作为发送端,B只能作为接收端。
- (2) 半双工通信。半双工通信是指信息流可以在两个方向上 传送,但同一时刻只限于一个方向传送,如图 1 (b) 所示。 其中, A端和B端都具有发送和接收功能, 但传送线路只有 一条,某一时刻只能 A 端发送 B 端接收,或者 B 端发送 A 端接收。
- (3) 全双工通信。全双工通信能在两个方向上同时发送和接 收数据,如图 1 (c) 所示。A 端和 B 端双方都可以一边发送 数据,一边接收数据。

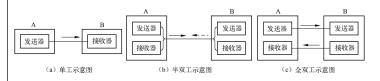


图 1 数据通信方式示意图

3. PLC 常用通信接口标准

PLC 通信主要采用串行异步通信,其常用的串行通信接口(标 准)有RS-232、RS-422和RS-485等。

二、N:N 网络通信

1. N:N 网络的构成

N:N 网络通信是把最多 8 台 FX 系列 PLC 按照一定的连接方 法连接在一起组成一个小型的通信系统, 其中一台 PLC 为主 站,其余的 PLC 为从站,每台 PLC 都必须配置 FX2N-485 通 信板,系统中的各个 PLC 能够通过相互连接的软元件进行数 据共享,达到协同运作的要求。

2. 与 N:N 网络通信有关的辅助继电器和数据寄存器

在每台 PLC 的辅助继电器和数据寄存器中分别有一片系统 指定的共享数据区,网络中的每一台 PLC 都有自己的共享辅 助继电器和数据寄存器。

3. N:N 网络的设置

N:N 网络的设置只有在程序运行或 PLC 启动时才有效。

- (1) 设置工作站号(D8176)。D8176的取值范围为0~7, 主站应设置为 0,从站设置为 $1\sim7$ 。
- (2) 设置从站个数 (D8177)。该设置只适用于主站, D8177 的设定范围为1~7,默认值为7。
- (3)设置刷新范围(D8178)。刷新范围是指主站与从站共 享的辅助继电器和数据寄存器的范围。
- (4) 设定重试次数 (D8179)。 D8179 的取值范围为 0~10 (默认值为3),该设置仅用于主站。当通信出错时,主站就 会根据设置的次数自动重试通信。
- (5) 设置通信超时时间 (D8180)。 D8180 的取值范围为 5~ 255 (默认值为 5), 该值乘以 10ms 就是通信超时时间。该设 置仅用于主站。

决了进 口加工 中心定 位精度 为千分 之一度 的 N C 转台锁 紧故障, 打破了 国外技 术 封 锁 和垄断。 他,致力 中国高 端装备 研制,不 被外界 高薪诱 惑,坚守 铸造重 型机车 "中国 心"。

的"垂直

投影逆

向复原

法",解

小组

讨论

听讲

观察

记忆

提出

问题

引导

学生

回答

讲述 板书

> 小组 提出

> 问题 讨论

引导 学生 回答

三、并行通信

并行通信用来实现两台同一组的 FX 系列 PLC 之间的数据自动传送,其系统构成如图 2 所示。

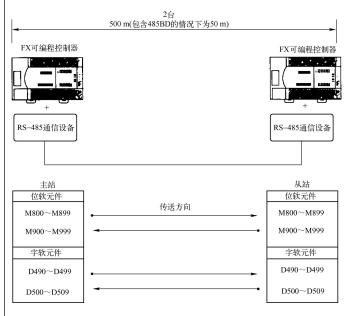


图 2 并行通信系统组成

1. 普通模式

并行通信的普通模式如图 3 所示,必须使 M8162=OFF。通过 M8070 和 M8071 分别将连接在一起的两个 PLC 设置为主站 和从站,主站中的 M800~M899 一共 100 个辅助继电器的状态可以传递到从站中,供从站使用;从站中的 M900~M999 一共 100 个辅助继电器的状态可以传递到主站中,供主站使用。

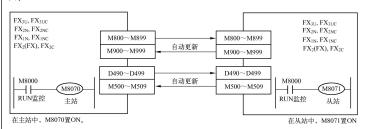
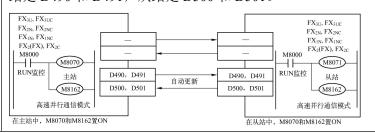



图 3 普通模式

2. 高速模式

并行通信的高速模式如图 4 所示,必须使 M8162=ON。通过 M8070 和 M8071 分别将连接在一起的两个 PLC 设置为主站 和从站。高速模式中主站和从站共享的只有 2 个字元件,主站是 D490 和 D491,从站是 D500 和 D501。

讲述 听讲 板书 观察 记忆

讲述听讲板书观察

记忆

图 4 高速模式

五、任务实施

某控制系统由送风和循环系统组成,如图 5 所示,它们均由一台功率为 10kW 的电动机驱动,并且两台电动机分别由两台 PLC 控制其直接启动。现需要两个系统能进行数据通信,具体要求如下。

- (1) 送风系统(主站)的 PLC 既能控制本站的送风电动机 启停,也能控制循环系统的电动机启停。
- (2)循环系统(从站)的 PLC 既能控制本站电动机启停, 也能控制送风电动机的启停。
- (3)两控制系统均能监控对方的运行和过载状态,当某一系统电动机出现过载时,两系统电动机均停止,并能在本系统中显示另一系统的过载信息。

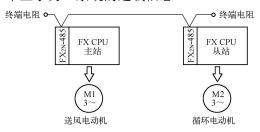


图 5 通信系统构成图

两个通信板的接线如图 6 所示。

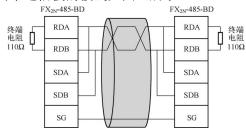
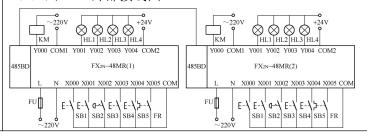
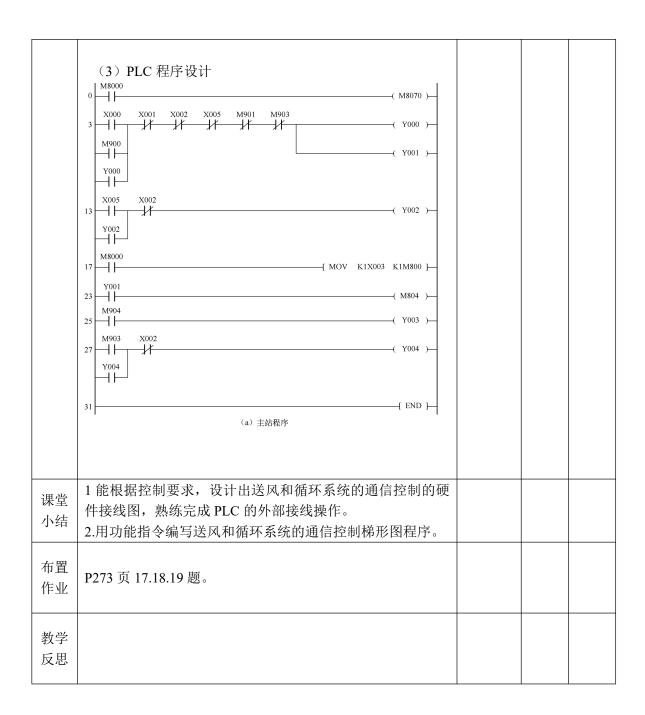



图 6 并行通信中 FX2N-485-BD 的接线

(1) I/O 地址分配表

输 入 端		输 出 🦸	岩
本站启动按钮 SB1	X000	本站接触器 KM	Y000
本站停止按钮 SB2	X001	本站运行指示灯 HL1	Y001
本站急停按钮 SB3	X002	本站过载指示灯 HL2	Y002
对方启动按钮 SB4	X003	对方运行指示灯 HL3	Y003
对方停止按钮 SB5	X004	对方过载指示灯 HL4	Y004
本站过载信号 FR	X005		

(2) 画 PLC 外部接线图



演示

学生

操作 动手

操作

